

© 2017-2019 Melvin E. Conway - 1 - December 5, 2019
Twitter: @conways_law

The Humane Dozen
Mel Conway

The twelve attributes below summarize my current thinking about the simplest possible
way to think about, and build, interactive applications. This list arises from 60 years of
thinking about simplicity. The major insights came when I stopped thinking like a
computer scientist and started thinking like an anthropologist.

Simplicity seems to be the flip side of universal understanding.1 That’s because the key
to simplicity is the key to universality: what Nature has invested heavily in building into
every human: the hand-eye-brain system. In other words, the key to simplicity, as I have
come to understand it, is to think about building software as a manual activity.

I haven’t been able to separate thinking about the conceptual model of an application
from thinking about the tools required to build that application. Another thing I haven’t
been able to separate is the set of twelve attributes itself. They can’t be thought of in
isolation. They are a set of interrelated guidelines for designing a language-tool
synthesis. Once that synthesis exists it can be played with and evaluated. I have built one
such example using a dataflow wiring metaphor2 and am exploring its use now. Some of
the items below might not even make sense by themselves until they are seen in the
context of using such a holistically-designed tool.

1 My models for this assertion are these three technologies:
calendar, writing, and arithmetic. All three evolved from the
obscure and complex domain of a priest class to being taught in
elementary school.
2 A 6 ½-minute silent annotated video illustrating these principles
is at
 https://vimeo.com/275108662

© 2017-2019 Melvin E. Conway - 2 - December 5, 2019
Twitter: @conways_law

The Seven Attributes of a Hands-on Workflow
Hands on the working material

Consider this thought experiment. Imagine that you are
a potter in the bowl-making business, but the
individual potter’s wheel technology does not exist.
Instead what you have to do to make a bowl is write a
bowl-turning script in a text editor, email it to China,
and then wait for the bowl to be shipped back.
That is pretty much how we built software when I got
started in the 1950s. Things are a little better now, but
we’re still a lot closer to the text-editor end of the
hands-on spectrum than to the potter’s wheel end. My
goal, simply stated, is to move along that spectrum
toward the potter’s wheel.

The following seven attributes of a tool-language
synthesis are what I consider necessary to move
toward the hands-on end of the spectrum.

Every modification made to the working material is
immediately seen in its behavior.
Small changes lead to predictable outcomes.

The result of each change suggests the next change,
like a child playing with a construction toy.
The tool seems invisible and the artisan’s hands are
directly on the working material.
All parts of the application can be inspected at any
time.

The artisan can change his or her work in midstream.

Every gesture of the artisan that changes the working
material is reversible and will not break the system. Of
all possible states of the working material, many can
be ugly or incorrect, but none are broken.

1. Immediate

2. Continuous

3. Interactive

4. Transparent

5. Inspectable

6. Modifiable

7. Robust

© 2017-2019 Melvin E. Conway - 3 - December 5, 2019
Twitter: @conways_law

The Five Attributes of a Single-mode Workflow

Minimum mental gear-shifting

A Mode is a cognitive context you have to put yourself
in to do a particular task, for example, being in the
mind-set of command-line syntax in order to compose
a command, or programming-language syntax in order
to write code.
Switching between modes is taxing and error-prone.
The more modes, the greater the cognitive load. The
following five attributes minimize cognitive load,
minimize switching cost, and enhance fluidity in the
workflow.
Notice Self-revealing in particular. This is the
antithesis of coding. Instead of being required to enter
a syntactically correct expression, you choose from
alternatives each of which has been explained. When
this attribute is put into practice consistently and
without exception it transforms the construction
process.

“Source” and “Object” language representations are
the same.
Interfaces present and explain choices; they don’t
require formal constructions.
The tool and the application being built are side-by-
side peers, running at the same time. Your next action
can be on either.
There is no concept of starting or stopping applications
or components during construction. When you drag a
component onto the workspace it is running.
You can see the flow of data through the application
moment by moment.

1. Unified

2. Self-revealing

3. Symmetrical

4. Always on

5. Alive with your data

