d
Humanizing Application Building

An Anthropological Perspective

This presentation is not just about a new or better way to build software. The
project is more ambitious than that.

| started out posing this computer-science problem: “Can | find a simpler
conceptual model for computer applications that will be accessible to more people?”
As a model evolved and | experimented with the construction tool | was building for
this model, the problem started looking different. | began to see the construction of
software in the context of the whole sweep of human tool use. This is a very, very
long progression that began over a million years ago with chipping flakes away from a
stone to make a hand-axe. Manual tool use is a big part of what makes us human,
and we spend the first few years of our lives working very hard to acquire the skills
that allow each of us to join this long procession of human tool users.

What hacking at a handaxe, peeling potatoes, and performing brain surgery
all have in common is their dependence on the hand-eye-brain system that we are all
born with and that we continue to extend for years thereafter. My purpose is to
bring software construction into this conceptual framework. This anthropological
view is the perspective from which | now think about software construction.

Why a Universal Understanding of
Software Is Important

* The microprocessor has revolutionized how
everyday things are built

» The automobile
» The mobile phone

 Software is joining the technology commons

» The calendar
» Arithmetic
» Writing

I’ d like to use one slide to state the beliefs that are behind this research.

The embedded microcomputer has changed how almost everything is built. |
remember my epiphany after studying an automobile service manual: what | had
once thought was a car is now really a bunch of car-shaped computer peripherals
programmed to behave the way we expect a car to behave. And of course what we
have been calling a phone is now an application platform.

Our civilization has three important technologies that have moved from the
exclusive provinces of educated elites to universal understanding: the calendar
(originally in agriculture), arithmetic (originally in commerce), and writing (originally
in commerce and law). Once only priests could use them; now they are taught in
elementary school. In the journey of these three technologies from exclusiveness to
universality, they had to be reinvented multiple times in order to make them more
widely understood. Also, strategies for teaching them had to be invented.

Because software has become central to so many things around us, | believe
that the understanding of software must join this same progression from exclusivity
to universality. Behind this research is the belief that the humaneness of a
technology (as I’ Il define it) is directly related to its potential for universal
understanding.

The Discovery Strategy

Two user-empowerment events
changed computer history:

* Spreadsheet software

* WYSIWYG Word Processing software

DO IT AGAIN

Going back to the original problem, how do | make application building more
accessible, | looked for historical instances where a great number of computer-naive
people naturally gravitated to using particular computer applications. The idea was to
learn how these applications succeeded with their new audiences and then repeat
the lesson, this time with software construction.

History gives us two obvious examples: the spreadsheet and the What-You-
See-Is-What-You-Get word processor.

The introduction of the VisiCalc spreadsheet on the Apple Il in 1979 changed
the personal computer from a hobby toy to a business machine. Business people
began circumventing established IT acquisition processes, buying Apples on their
expense accounts and taking them to work so they could use VisiCalc. This subversive
infiltration into the office is one big reason behind IBM’ s development of the IBM PC.
After the PC came out Lotus put 1-2-3 on it and, in the words of Wikipedia, Lotus
1-2-3 became the “PC's first ‘killer application’; its huge popularity in the mid-1980s
contributed significantly to the success of the IBM PC in the corporate environment.”

Another widely adopted application has been Microsoft Word, especially later

versions that exactly duplicate on paper the page image the user builds on the
computer screen.

How to Humanize Application Building?

Learn why the spreadsheet and
word processor became killer apps

 Apply the lessons to application
building

It" s generally understood now that what the spreadsheet and word processor
do that is so powerful is: they get out of the way. The premise is that the user is an
artisan who is familiar with the conceptual model of the object he is building, and the

software tool attempts to be transparent, giving the illusion that the user is working
directly on this object. My initial computer-science problem then became: how can

we do that for building software?
That was the starting point. Since then | have generalized the lessons, and
now I’ Il show you what | have learned.

The Agenda

Definition of a Humane Tool

Design principles: Humane Construction

Design principles: Humane Application Development

Demonstration

Here’s the table of contents. Going back to the caveman-making-a-hand-axe
vision, the overriding construction paradigm is that of an artisan, manipulating his
working material with his hand tools. The artisan model pervades this synthesis, and
it will be the basis of the definition of a humane tool in part 1.

In part 2 I Il describe two major processing paradigms, the first being the
input-process-output model we inherited from serial file processing and that is still
with us in the Unix shell languages. This worked well for thinking about punched
cards and magnetic tape data processing applications, but when the world switched
to interactive event-driven applications it was no longer helpful. The second model,
which I’ m calling “arts and crafts,” is based on the artisan paradigm and has two
tightly connected parts: the tool and the working material. In part 2 I’ Il describe
several attributes of a humane construction process.

Part 2 applies to construction in general. In part 3 I’ Il restrict the
consideration to software application development. Here I’ Il present a hypothesis
that each application can be factored into two parts, a dynamic part that is fixed
across a set of applications, and a static part that is specific to each application in the
set. I’ [l assert that good algorithm languages and good application languages are
totally different animals, and the criteria for effective algorithm languages are quite
different from the criteria for effective application languages. This is relevant because
in the artisan-centered application creation model, the application language
describes the working material.

I. Definition of a Humane Tool

It Effectively Employs
What We All Share:
Coordinated Hand-Eye-Brain Tool Use

Homework:
Watch a Toddler Work

A tool is humane to the extent that it rewards its user for using the hand-
eye-brain system each of us has worked so hard to develop. A tool is not humane to
the extent that it forces its user to employ other, less well developed, faculties.

If you study the massive effort it takes for a child to learn to feed him- or
herself with a spoon or to build a pile of blocks, you come to appreciate all the
internal machinery that is being built by that effort and what a large investment of
human capital is being made in the hand-eye-brain system.

My computer-science problem then becomes: how do we employ this human
investment for software construction? This anthropological way of thinking is going
to lead us to some specific design criteria about how to build software applications.
After developing these criteria I'll show you a construction session that puts them
into practice.

IT.
Design Principles: Humane Construction

* Two processing models

The two parts of the arts-and-crafts construction model

Properties of arts-and-crafts tools

The brain-artifact conversation

* ...as applied to building event-driven GUI applications

In this section I’'m going to apply the definition of humaneness to building
things in general. There are five slides in this section.

In the first slide I'll state that the input-process-output processing model we
inherited from serial file processing is not what we need, and I'll present the
alternative, which | call “transform in place” or “arts and crafts.” Then, given this
processing model I'll present the two parts of the arts-and-crafts construction model:
the tool and the working material, and I’ll state what the two parts are in the case of
application construction.

In “properties of arts-and-crafts tools” | enumerate specific characteristics
that enable the comfortable interaction between the artisan and his working
material. | call this comfortable interaction the “brain-artifact conversation.” The
remaining slides in this section elaborate on this.

Input — Process — Output

» UNIX shell
» Punched cards, magnetic tape data processing
» Edit — compile —link — run- debug

Arts & Crafts (Transform in Place) /

» Text editing, transaction processing
» Carpentry, Sculpture, Pottery
» Software?

When | started programming, commercial data processing was a matter of
periodically updating sequential files. At that time the common storage medium,
trays of punched cards, was giving way in large applications to magnetic tape. The
moving-head disc, which IBM made into a commercial reality, made transaction
processing feasible, but that was several years later.

When | was starting, the dominant processing model was input-process-
output, shown at the top. The two-in, two-out model shown here could do utility
billing. One input file was the customer master file, the other contained the meter
readings. Both were sorted by customer ID. The output files were the updated
customer master and the printable utility bills. It was a very useful model, but it’s
hard to imagine how you can usefully describe interactive transaction processing
using this model.

Notice that the traditional method of preparing computer code is an example
of input-process-output.

The second approach I'll call arts and crafts. In the arts-and-crafts model you
start with the working material in place and you step-by-step transform it into its
final form. This is the processing model of the artisan and the one I’'m going to use
from now on. What does building software look like from this point of view? One
thing we might guess is that the source code-object code distinction goes out the
window; that’s a holdover from the input-process-output model.

The Two Parts of the

Arts-and-Crafts Construction Model

The Two Parts:

Tool WOI’kI!‘lg
Material
Hands,
Wheel Clay
Fa
2
g ft
< . Software
Application | Development Lib
Development Toolset ! -rary
Objects

The two parts of the arts-and-crafts construction model are the tool and the
working material. Think of the potter at her wheel, the cabinetmaker turning a table
leg, a carpenter framing a house, a cook peeling potatoes, or a neurosurgeon doing
brain surgery. In each case the toolset is what the artisan carries from job to job, and
the transformed working material is what he leaves behind at the end of a job.

In the case of application development, the artisan is the software developer
and the working material usually consists of instances of software library classes

glued together by some code written by the artisan-developer.

o 3 T4
o S LA

Properties of Arts-and-Crafts Tools

Transparent

» Nothing between you and your working material

WYSIWYG

» No translation cognitive load

The Brain-Artifact conversation

» Unity — Immediacy — Continuity — Interactivity — Reversibility

Now we get into the nuts and bolts of what tools that support the arts-and-
crafts paradigm have to be good at. These are ideals, of course, but they provide a
useful set of design principles.

Transparency means successfully conveying the illusion that the artisan is
working on the material directly with his hands.

What-You-See-Is-What-You-Get means you don’t have to think at all about
any distinction between source and target forms of the working material. (That went
away with input-process-output.) Well-executed scripting languages are good at this.

Now, this thing | have named the “brain-artifact conversation” describes what
happens in an ideal arts-and-crafts construction session. In the next slide I'll use the
hammer-nail example for explaining the conversation.

10

The Brain-Artifact Conversation

Unity

Continuity

Immediacy

Interactivity

Reversibility

In the ideal, | visualize a dance that occurs between the artisan and the
working material that is barely conscious, in the manner of a master potter at her
wheel. This dance has these properties:

Unity. There is only one thing being worked on, and it’s both the input and
the output. Nailing two boards together means transforming, in a sequence of steps,
two boards and a nail into two boards nailed together.

Continuity. Small actions produce small changes. Hit the nail harder and it
will probably move more. This characteristic helps to tell you how hard and in what
direction to hit and when to stop. (Of course software is nonlinear and discontinuous,
but in the small this is a valuable guideline.)

Immediacy. When you swing the hammer, the nail moves and the eye-brain
immediately understands the new state of the working material.

Interactivity. Continual tactical planning is part of the dance. How you hit the
nail this time depends on what it did the last time you hit it. The overall construction
strategy might be in place but the detailed sequence of steps required to do the
whole job is not predetermined; each step helps to determine the next.

Reversibility. The hammer comes with a nail puller.

11

7m S nﬁ'my
The Brain-Artifact Conversation Applied to

Building Event-driven GUI Applications

Unity

» What you see is what executes (WYSIWE)
» Tool and application are side-by-side peers
» Tool and application are always “executing”
Continuity

» Small app changes => Understandable behavior changes

Immediacy
» Modify app => New steady state => New results

Interactivity
> Iterative development, experimentation

Reversibility

» Remember the “*undo”

This is what the brain-artifact conversation looks like in application construction.

Unity. WYSIWE means that what you are building remains on the screen.
Putting a translator between what you see and what actually executes would destroy
transparency. Note that both the tool and the application are event-driven GUI
applications running side-by-side, and either one can take the next user event. You'll
see this more concretely during the demo.

Continuity. If you make small changes to your application you will probably
understand at every step whether you have made progress.

Immediacy. The consequences of a change must show immediately or else
you have broken the spell of the dance.

Interactivity. This is not software engineering. It’s the way real people build
things they want to use, going all the way back to the hand-axe.

Reversibility. Nothing new here.

12

ITT.
Design Principles:
Humane Application Development

 Static is Good
* The Static Factoring Hypothesis

These two principles come from way back in my personal history when | was
trying to understand the transition from serial file processing to transaction
processing. So I’'m not going to spend a lot of time justifying them; I'll present them
as axiomatic. | have written elsewhere about the discovery process.*

*http://heed.melconway.com/ at the “History” tab.

13

Static Is Good

Axiom:
A Humane Application Language
does not
Describe Algorithms;
it

Hides Them

This axiom is worth reading carefully so I'll pause for a bit.

It is the basis of my assertion that application languages and algorithm
languages are different animals.

Initially | based the idea that static is good on the evidence that a lot of people
are not very good at devising sequential strategies. But then the static factoring
hypothesis came along and | saw that Static is Good and the Static Factoring
Hypothesis are two sides of the same coin.

14

The Static Factoring Hypothesis

i

-A Set of Applications

App1j[App2J[App3 App 4
(static) (static) (static) (static)

Runtime algorithms common to all applications
in the set
(Implied by constuction tool; not explicitly described)

* Demonstrated for linear file processing, GUIs
* New: A whole-application factorable model for data-
based event-driven (GUI) applications

The static factoring hypothesis says that the universe of applications can be
partitioned into disjoint sets according to common underlying algorithms that are
fixed within each set of applications. Then the specification of a particular
application within each set is a static parameterization of these algorithms.

Of course the hypothesis is trivial if each set contains only one application.
But the first such set | encountered that fits the hypothesis is the whole set of serial
file processing applications, first with punched-card files and then with magnetic tape
files. In punched-card processing a processing run consists of running decks of cards
through about a half-dozen specialized-function machines, such as sorter, collator,
reproducing punch, and a totalizer/printer. Each machine is programmed with a
wiring panel, but it turns out that almost all of the wires just format data, and the
underlying algorithm is built into the machine. So many batch-processing business
applications fit the hypothesis. The software industry recognizes the hypothesis
because it has created tools called “report generators” with mostly static
specification languages.

The user-interface builder in Visual Basic also illustrates the hypothesis. In this
case the underlying algorithm is an event dispatcher and the static description is one
or more pictures of windows and dialog boxes.

What | wasn’t able to find was a a way to fit whole event-driven GUI
applications, from database to user interface, into the hypothesis. That’s what I'll
now introduce.

15

Summary:
Appllcat|on BU|Id|ng for the Rest of Us

Tool: An Arts-and-Crafts Tool

Transparent — WYSIWE — Brain-artifact conversation

Working Material: An Application Description

Static language: A plumbing/wiring diagram, unidirectional flows

Concrete metaphor: Application data flow from source to screen

Concrete metaphor: “Projector” components show data on screen

PrOJector
Data Source
PI’OJeCtOI’j

Here is a wrap-up of what | have said so far. You are an artisan building an
application using the “transform-in-place” or “arts-and-crafts” construction model.
This model has two parts: the tool and the working material (that is, the stuff of your
application). The tool has some special properties: it supports the illusion that you
are manually manipulating your working material, what you are building on the
screen is what executes, and it supports the dance | call the brain-artifact
conversation.

Screen

Now to the working material. I've already made the case that it is a static
description; in this case it’s a plumbing or wiring diagram. We’ve all played with
dataflow models; this is one of those. It's shown schematically at the bottom of the
slide. Data flows through components from left to right, with the files or databases at
the left and the user-interface screen at the right. At the right end of the plumbing
network are “projector” components that show the data on the screen.

Before | show you a couple of slides on projectors, let me mention event
handling. The biggest problem with the dataflow model is how to handle user-
interface events. The temptation is to handle an event at the user interface with a
right-to-left event flow. This approach leads to nothing but trouble. In the present
model, some projectors (such as those that project buttons) can take events from the
user. There are no right-to-left “event flows.” Event handling is not an add-on but is
an intrinsic property of certain components and works well within the unidirectional
left-to-right model.

16

Title Bar Projector

Menu Bar Projector

Text Area Projector

Here is a screen shot of a simple text editor | built with the prototype tool.

This window has three projectors. There is a projector for the title bar,
another for the menu bar, and one for what shows up in the main part of the
window, in this case a single rectangular area that has text-editing behavior. The
three projectors are terminal components at the right end of the plumbing network
for this application. Flowing into the sink connector in the back of each projector is
some sort of application data object. The question is: what gets fed into the back of

each projector?

The Projection Metaphdr:
The Display is a Back-projection Screen

! JFl’d-sonnet.txt
File | Edit - [O[X]

Son
Will cut are

Whe pacte a with Fortune and men's eyes,

lall cleq my outcast state,
And coect al eaven with my bootless cries,
And self and curse my fate,

‘Wishing me like to one more rich in hope,

Featured like him, like him with friends possessed,
Desiring this man's art, and that man's scope,
\With what | most enjoy contented least,

'Yet in these thoughts myself al t despising
Haply | think on thee, and then my state

i f day arising
(Like to the lark at break o i
i heaven's gatel
rom sullen eanh]#‘- hymns at tes
FFor thy sweet love rememb'red such w_ealu‘r brings
That then | scorn to change my state with kings.

17

The Projection Metaphor:
The Display is a Back-projection Screen

P ——
(

Title Bar Pro]eclor

Menu Bar Pr({jector
J

Text Area Prc;jeclor

The title bar projector is simple: a text object flows into its back end. The source of
this text object can be anything that sources text objects. In this case it’s a

‘Fd»sonnet.txt
File | Edit
Son do
Will cut are

lall cley b my outcast state,

And oo a1 Peaven with my bootless cries,

And rself and curse my fate,

‘Wishing me like to one more rich in hope,

Featured like him, like him with friends possessed,

Desiring this man's art, and that man's scope,

\With what | most enjoy contented least,

'Yetin these thoughts myself al t desp

Haply | think on thee, and then my state

(Like to the lark at break of da t'aven's —

llen earth sins mns a -.-

F?:;Tt:; sweet Io‘]/e rememb'red such w_e:llt(l;nhrslngs

That then | scorn to change my state with kings-

concatenation of a constant (“Fred”) and a variable (a file name).

Whe pacte Q with Fortune and men's eyes,

18

TN

The Projection Metaphor:
The Display is a Back-projection Screen

[/ Fred-sonnet.txt

Title Bar Projector File | Edit
Son

Will cut are

Menu BW/ W
Whe paste with Fortune and men's eyes,

; lall ceqr my outcast state,
Text Area Pigjector And i caven with my bootless cries,
And self and curse my fate,

Wishing me like to one more rich in hope,
Featured like him, like him with friends possessed,
Desiring this man's art, and that man's scope,
\With what | most enjoy contented least; .
'Yet in these thoughts myself al t despising,
Haply | think on thee, and then my state
(Like to the lark at break of da Iaven's —

P il)| sings hymns a R
F;T:T:E;"s‘i:eet lmlle rememb'red such wealth brings

That then | scorn to change my state with kings.

The main area of the window also displays a text object, with some additional
features such as the blue selection. In this case the projector component embodies
the text editing functions and acts on the drag event that defines the selection. In
other cases the component that acts on a user-interface event can be deeper inside
the plumbing network. That is, projectors take user-interface events, but they don’t
always act on them. Sometimes a projector just tells the object being projected that
it has received an event, and this object sends a message to the component from
which it originated. This is what happens in the case of the “copy” command object
being projected by the menu.

19

TN

The Projection Metaphor:
The Display is a Back-projection Screen

T‘ iFred-sonnet.txt

Title Bar Projector File | Edit
/ Son e

Wil cut are

Menu Bar Projector %F\
Whe pacte with Fortune and men's eyes,

lall g b my outcast state,

And Soet) peaven with my bootless cries,

And yself and curse my fate,

‘Wishing me like to one more rich in hope,

Featured like him, like him with friends possessed,

Desiring this man's art, and that man's scope,

'With what | most enjoy contented least .

'Yet in these thoughts myself al t despising,

Haply | think on thee, and then my state

(Like to the lark at break of da Iaven's .

len earth) BT EADUIER] t

F:’T)Tt:;jllsweet Iu\le rememb'red such w_t::llt(l_lnbl;ngs

That then | scorn to change my state wi ings-

Text Area Projector

So what comes into the back of a menu-bar projector? In this application
model, a menu bar is a collection of menus, each of which is a collection of command
objects, such as the “copy” command object. A command object phones home when
its projector tells it that it has received an event. This phone-home message
eliminates any need for right-to-left event flows, which don’t exist in this application
model.

Incidentally, the phone-home message is really a sequence of two messages:
projector to flow object, and flow object to the component that originated it. This
two-step sequence is true for all inter-component communication. It effectively
decouples components, which facilitates the practical matter of component reuse.

20

The Application Model

An object-flow plumbing/wiring network (static).
Application data objects flow left-to-right from data-source
components on the left to projector components on the right.

The “flow objects” can be of any complexity/data type and are
selected/combined/transformed on their journeys from data
source to screen.

Network abstraction and component reuse work as expected.

Ul event handling: Some projectors (e.g., buttons) can receive
events. A Ul event message is sent to the flow-object’ s source
component in two hops—no right-to-left flows. Same protocol
for user data entry.

Automatic update behavior is inherited (default).

This summarizes what | have said about the application model. One: Itis a
static left-to-right object-flow model. Two: If a flow object flows into a projector it
shows up in the display region handled by the projector.

Three: Flow objects can be instances of any data type. A lot of what the
components do in a business application is manipulate collections: parsing,
combining, and selecting.

Iltem four says that the model scales. You can turn a flow network into a
component that you can reuse without knowing whether what’s inside is code or
plumbing. There are two kids of components: primitive components and composite
components. Primitive components have code inside and composite components
have plumbing inside. From the outside they are indistinguishable. By the way, this
works if what flows are application data objects; it doesn’t scale if what flows are
messages, as in some early flow models.

The bottom two items are more about implementation. There is a protocol
governing flows that all components inherit. When something comes out of a source
connector at the right of a component, it will arrive at the sink connectors of all
connected components, and those components will be notified of the arrival. Each
component, in turn, guarantees that its outputs will be correct, given its inputs. As a
result, any event that causes a data value to change will lead to a sequence of flows
that eventually stabilize into a new equilibrium. This behavior determines the
common underlying algorithm for this application model.

21

Static Factoring

-
Static Flow-network

Description

N

Underlying Flow
Scheduler

The Application: A Static Flow

Network with components and
— pipes/wires. Structure exposed by

WYSIWE tool. No compiler.

The Runtime: Schedules flows
after an event. Not an interpreter;
the (primitive) components do the
executing.

This slide states that the application model is an existence proof of the static
factoring hypothesis. The common runtime contains the scheduling algorithm that
causes the network to stabilize into a new equilibrium state after any change caused

by receipt of an event.

As far as I’'m able to tell, this model works for all event-driven applications
with graphical user interfaces. That is, the static factoring hypothesis holds for the

entire class of such applications.

22

IV.
Demonstration

http://heed.melconway.com

Now I'll show you a realization of these design principles. But before | switch
over to the construction tool I'll show you one slide that will help you with what you
are going to see.

23

Construction Tool Screen Shot

8=l

orkspace -

Working Material

— Component Palette

a [Component type 'TextS ource”

Define Short Text

Component Categories

The description of this simple application is the network drawing inside the
dashed blue rectangle; | drew this by dragging the components out onto the
workspace from the component palette at the left, and dragging wires between the
connectors. This is the working material of the arts-and-crafts construction model.

The “Three Stooges” window at the right is the behavior of the application.
The window frame is projected by the large component at the right of the workspace.
Of the three inputs to this component, the top is the text for the title bar and the
other two are the projectors for the text line and the list box.

The square component to the left of the list box projector makes a selection
from the collection that comes into its sink connector at its left. (The icon art is meant
to suggest a rotary switch.) The collection that comes in at the left is routed up to the
top source connector and on to the list box projector, which displays it. There is a
tight coupling between this selector component and the list box projector so that
whatever the user selects in the list box comes out the lower source connector of the
selector, which then goes on to the text line projector. The collector component to
the left of the selector wraps its three inputs into a single collection object.

Please keep in mind that what I'll be showing you is secondarily a
presentation of an application language, and is primarily an illustration of how the

design principles for humanistic construction can be realized. So now I'll bring back
the slide in which these principles are summarized.

24

The Brain-Artifact Conversation Applied to

Building Event-driven GUI Applications

Unity

1. What you see is what executes (WYSIWE)
2. Tool and application are side-by-side peers
3. Tool and application are always “executing”

Continuity
4. Small app changes =>» Understandable behavior changes

Immediacy
5. Modify app => New steady state => New results

Interactivity
6. Iterative development, experimentation

Reversibility

7. Remember the “undo”

Here is the mindset I'd like you to have when you are watching this. You are
watching an artisan, say a potter at a wheel, working with a plastic medium, pushing
it around into different forms.

25

