

© 2018 Melvin E. Conway - 1 - January 2, 2018
Twitter: @conways_law

The Life Cycle of an Event
The topic here is the behavior of event-driven GUI
applications built on the flow object model1. This paper
describes the behavior of these applications in
response to user-interface events.
What’s important to keep in mind is that an event-
driven GUI application is either sitting still doing
nothing (that is, every event-aware user-interface
projector component is listening for an event) or else
the application is busy responding to one user-interface
event. The application alternates between these
quiescent/busy states, spending almost all of its time in
the quiescent state.
This paper describes the entire behavior of these
applications in terms of the response to one event by
one projector component. It combines material from
two preceding papers.2,3 I am treating it as a topic unto
itself for these reasons:

1. I find it interesting that the flow object model
partitions the application so that its whole
activity can be described simply in terms of the
event response of a single user-interface
component.

2. This paper presents a subsystem communication
model that appears to be distinct from Model-
View-Controller and could therefore be of
general interest.

3. The algorithms described here look more like
the solution of a physical constraint network4 in
the presence of a disturbance than object-
oriented software.

4. This paper describes the overall event-
processing design of every event-aware user-
interface projector component in terms of a
simple state machine.

1 http://melconway.com/Home/pdf/pattern.pdf
2 ibid, Update Protocol, p. 13.
3 http://melconway.com/Working/WP_9.pdf component computation
scheduling algorithm, p. 13-14.
4 I am indebted to the work of Alan Borning on ThingLab. See
https://en.wikipedia.org/wiki/ThingLab

© 2018 Melvin E. Conway - 2 - January 2, 2018
Twitter: @conways_law

The figure below shows that every component can be
in one of two conditions with respect to whether its
output is consistent with its inputs. If the output is
consistent with its inputs the component’s constraint is
said to be satisfied; otherwise it is said to be broken.
The environment of the executing application contains
the network of connected components; it also contains
a callback queue. In this queue is one callback for each
component with a broken constraint, and no callback
for any component with a satisfied constraint.5
When all constraints are satisfied, that is, when the
output of every component is consistent with its
transfer function applied to its inputs, the application is
quiescent and the queue is empty. (Part A on the left
shows a component with a satisfied constraint and no
entry in the queue.) Every component with a broken
constraint is matched by one callback in the queue that
can cause execution of the component’s transfer
function. (Part B on the right shows the broken
constraint as a dotted arrow and the callback for this
component pointing to the transfer function.)

Receipt of an event from the User Interface
Management System (UIMS) will introduce at least
one broken constraint into the quiescent network. This
can happen in the projector component that receives
the event, or it can happen as the result of executing
the Update Protocol, which is triggered by the
component receiving the event (see the next section).
Upon termination of the Update Protocol the
environment will work through the callback queue(s)

5 There are actually three queues; this is an optimization to
minimize redundant display refreshes. See
http://melconway.com/Working/WP_9.pdf page 14.

The Constraint-resolution
View of the Network

© 2018 Melvin E. Conway - 3 - January 2, 2018
Twitter: @conways_law

from the front, applying each callback (that is,
computing its component’s transfer functions), and
then removing the callback from the queue.
After computing its transfer function each component
will typically have a new output value. The
consequences of this value must immediately be
reflected downstream.6 (I know of two cases that
require a push at this point: adding a wire in the tool
and changing the selection in a Selector component.7
Otherwise, the network of dependent endpoints is
already in place and all that is required is the notify
dependents part of the Update Protocol.)
When a downstream component’s sink connector
receives notice that its value has changed, the
component’s constraint is then by definition broken, so
a new callback might have to be added to the queue.

• If the component’s constraint was previously
satisfied8 its callback is added to the rear of the
queue. Its transfer function is not computed at
this time.

• If the component already has a broken
constraint, it already has a callback in the queue
and nothing is added to the queue. (In one
approach the callback is moved to the rear of
the queue.)

6 The exception is if there has been no change to the output;
whether there is actually a test for that is a component-specific
optimization.
7 Whether any other cases exist is an open question.
8 This can be determined either by searching the queue or by
keeping a satisfied/broken flag in each component.

© 2018 Melvin E. Conway - 4 - January 2, 2018
Twitter: @conways_law

The life cycle of an event begins and ends with the
user-interface projector component that receives the
event.
The accompanying figure describes the behavior of
every event-aware user-interface projector component
as a state machine. When it is not busy (this is State 1)
the projector is listening for a particular event from the
UIMS. Note that Transition 2 → 3 is the only place
where the component’s activity is specific to that
component’s functional definition.

State 1. The projector is quietly
listening for its particular event from
the UIMS.
Transition 1 → 2. The event arrives,
moving the projector to state 2.
State 2. The beginning of event
processing.
Transition 2 → 3. What happens here
is specific to the particular projector
component. At most, the component
will modify data visible to it via one
of its connectors. For example, a click
in a list box changes its selection
index. This causes the projector to
obtain the index from the UIMS and
assign a corresponding value to the
selection instance variable of the
SelectedOrderedCollection
object at the projector’s sink. Or, the
enter key in an editable text line
sends an event signaling the
completion of editing; the projector
obtains the new string value from the
UIMS and assigns it to the string
object at its sink. Note that at the end
of this step the user-interface
appearance is consistent with the
input to the projector.
State 3. Standardized behavior begins.
The projector inititates the Update
Protocol by sending the beginUpdate
message to the sink connector
carrying the object being projected
(call it the seed object).

The State-machine Projector
Model

© 2018 Melvin E. Conway - 5 - January 2, 2018
Twitter: @conways_law

Transition 3 → 4. This is the Update Protocol; see
reference [9]. From the constraint-network perspective,
the equilibrium has been disturbed because a constraint
is now broken: the component that owns the seed
object has an output that doesn’t conform to applying
its transfer function to its input because its output was
directly modified in transition 2 → 3. Transition 4 → 1
will restore the equilibrium.
State 4. The projector initiates the Resolution Protocol
by sending the resolve message to the environment.
Transition 4 → 1. This is the Resolution Protocol; see
reference[10]. Each component in the network with a
broken constraint has a callback in a queue whose
execution will compute the correct outputs and push
them down any connected wires. This might break the
constraints of one or more other components, causing
one or more callbacks to be queued. Eventually11 the
process will terminate with all queues empty, and the
program returns to a quiescent state.

9 http://melconway.com/Home/pdf/pattern.pdf page 13.
10 http://melconway.com/Working/WP_9.pdf page 13.
11 Absent an illegal cycle in the wiring, which must be checked,
probably at the time each wire is added.

