
© 2016 Melvin E. Conway - 1 - Date of pdf: 5/31/2017
Twitter: @conways_law

In Search of the Modeless Workflow

This paper applies to the development of event-driven GUI applications. It synthesizes
(1)the lessons I have learned about simplicity of application conceptual models and (2)the
user-interface design concept of the mode into the process concept of the Modeless
Workflow. The centerpiece of the paper is the list on page 8 of the twelve attributes of a
modeless workflow.

My research started out as an inquiry into simplicity in
understanding the internals of interactive applications.
It evolved through the following ideas.

1. If an understanding of application internals is to
be significantly simplified, let us think in terms
of making this understanding universally
accessible. Whether such a leap is a prediction
or simply a research tactic doesn’t matter; it’s
an assumption.

2. Given this assumption there is an analogy to the
history of arithmetic, calendar, and writing,
which have evolved from the property of a
priest class to being taught in primary school.
Using that analogy we can think of primary-
school children as proxies for the population as
a whole.

3. We can draw on the theory of childhood
education, particularly with respect to teaching
number sense and simple arithmetic. We have
learned from pioneers such as Montessori1,2 and
Cuisenaire3 that, for children, learning and
manipulation are inseparable.

4. This lesson helped me reframe the research goal
to this question: what is the software equivalent
of hands-on learning? Addresing this question
led to the definition of a hands-on software
development tool4.

1 https://en.wikipedia.org/wiki/Montessori_education
2 “The hands are the instruments of man’s intelligence.”
http://ageofmontessori.org/the-birth-of-a-mathematical-mind/
3 https://en.wikipedia.org/wiki/Cuisenaire_rods
4 http://melconway.com/Home/pdf/simplify.pdf page 12.

These Ideas Come From
Somewhere Else

© 2016 Melvin E. Conway - 2 - Date of pdf: 5/31/2017
Twitter: @conways_law

In this paper I’ll examine how far these lessons about
simplification of conceptual models can be applied to
simplification of application development. I do not
abandon any of the earlier lessons, in particular I keep
the flow or wiring diagram as a conceptual model of
an application. The approach is to combine two
concepts, modeless user interfaces and hands-on tools,
into the combined concept of the Modeless Workflow.

This paper incorporates this thesis: many
existing ideas about simplification of
development can be subsumed under the
concept of Modeless Workflow. Having a
single model for development simplicity could
be useful.

In order to talk about these ideas we need a model.
Here is one.

This is a model of a person interacting with a software
application and its data, which are here collectively
called the artifact. The facility is the technology the
person uses to interact with the artifact. The
application’s user interface is in the artifact.
This model can be useful in two contexts: the
development context and the deployment context.

Development and
Deployment Contexts

© 2016 Melvin E. Conway - 3 - Date of pdf: 5/31/2017
Twitter: @conways_law

In both of these pictures the artifacts are almost the
same. That is, on occasions (whose frequency is
dictated by development policy) a stabilized
application is moved from the development context to
the deployment context for production. We can call
this the industrial configuration, and can represent it as
follows:

Industrial and Educational
Configurations

© 2016 Melvin E. Conway - 4 - Date of pdf: 5/31/2017
Twitter: @conways_law

In the industrial configuration the developers and users
are distinct groups of people who don’t normally
communicate with each other (except in development
projects, in which the users are represented by
proxies).
Developers and users operate with distinct rule sets.
Users are bound by a controlled rule set determined by
the application, and autonomy with respect to the
system is discouraged; users can’t change the
application and they change the data only in ways
strictly controlled by the application. Developers, on
the other hand, value autonomy and need to learn and
adapt in order to do their job, which is to change the
application.
The development tools we are familiar with,
compilers, linkers, IDEs, test tools, etc., are designed
for the industrial configuration in which development
and deployment are strictly segregated.
But there is another configuration we can call the
educational configuration, in which the developers and
users are the same people: the students.

In the best instances of the educational configuration
the development tools and the application
infrastructure are tightly integrated, and moving
between them is easy and fluid. Tools designed

© 2016 Melvin E. Conway - 5 - Date of pdf: 5/31/2017
Twitter: @conways_law

specifically for this kind of integration are Scratch5
and Smalltalk; current examples of the latter are
Squeak6 and Pharo7.
The original Smalltalk is unique in that everything is
an object, and the initial libraries and development
tools are made up of objects in classes that are all in a
single integrated structure called the image.
Construction of the application is an extension of the
image accomplished by adding classes and methods.
The development tools and the application are made of
the same stuff, and might even share parts.

In the language of the basic model, the facility and the
artifact in the Smalltalk configuration are inseparable.
It is this tight integration of the application and the
development toolset that makes Smalltalk uniquely
desirable for education and for programming in
general. This integration makes Smalltalk less suitable
for deployment into a disciplined (and possibly
resource-constrained) industrial situation.8 This
inseparability also presents security risks, because the
tools for changing the application are present in the
deployment.
This perspective on the difference between the
industrial configuration and the education
configuration (and, in the extreme, the Smalltalk
configuration) raises the question: how much of the
fluidity and simplicity that are so highly valued in the
simpler configurations can be incorporated into

5 https://scratch.mit.edu/
6 http://squeak.org/
7 http://pharo.org/
8 There are other views on why Smalltalk has not succeeded in
industrial applications; see for example RailsConf 09: Robert
Martin, "What Killed Smalltalk Could Kill Ruby, Too.”
https://www.youtube.com/watch?v=YX3iRjKj7C0

The Best of Both Worlds?

© 2016 Melvin E. Conway - 6 - Date of pdf: 5/31/2017
Twitter: @conways_law

business application development? The present
approach to this question hinges on the concept of
mode, inherited from user interface design.
A mode is a temporary and restrictive context that
constrains the user into behaviors (1)that must follow
rules specific to that context, (2)whose outcomes
depend on the context, and (3)whose outcomes might
be different in another context. A mode persists until it
is exited by a user action, for example clicking the OK
button of a modal dialog box. The classic example is
the computer keyboard’s caps-lock key, but there are
many computer applications, in particular early text
editors and interactive applications (many still in use)
whose user interfaces consist of a keyboard and a full-
screen character display, that are full of modes.

Larry Testler put forth the concept of modeless
editing9 as part of the development of the
family of concepts of modeless user interface at
Xerox PARC10,11 and Stanford Research
Institute12,13 in the 1960s and 1970s. Since that
time modeless application user-interface design
has been encouraged by the design guidelines of
Apple14 and Microsoft15.

Here are two problems with modes that show up in
both the development and deployment contexts.

• It has been shown that the existence of modes
leads to an increase in operator errors16,
possibly because of increased cognitive load.
It’s also reasonable to expect that modal
systems are harder to learn.

• Modes limit the behaviors of the user to those
anticipated by the designer and thus reduce the
power of the tool for augmenting creativity. As
an example, the clipboard, first introduced into
modeless text editors for cutting and pasting

9 http://delivery.acm.org/10.1145/2220000/2212896/p70-tesler.pdf
10 https://en.wikipedia.org/wiki/PARC_(company)
11 http://worrydream.com/EarlyHistoryOfSmalltalk/
12 https://en.wikipedia.org/wiki/SRI_International
13 http://www.dougengelbart.org/
14
https://developer.apple.com/library/content/documentation/UserExperience/Conceptual/OSXHIGuidelines/
15 https://msdn.microsoft.com/en-us/library/windows/desktop/ff728831(v=vs.85).aspx
16 https://en.wikipedia.org/wiki/Mode_(computer_interface)#Mode_errors

What is a Mode?

© 2016 Melvin E. Conway - 7 - Date of pdf: 5/31/2017
Twitter: @conways_law

text clips, has been generalized to include many
other data types in many other types of
applications.

Modes are not always bad; they can be useful to
constrain the user’s choices in small, specific contexts.
A common example is a modal dialog box for
answering a question, which must be either answered
or abandoned before the user can return to the rest of
the application.
The following twelve attributes, derived from the
definition of a hands-on tool, characterize a Modeless
Workflow for developing event-driven GUI
applications. Some of these attributes imply design
requirements for the application conceptual model;
some imply design requirements for the tool; some
imply both.17

(The terms artisan, artifact, and working material
are motivated by the potter-at-the-wheel metaphor
for hands-on development. There is no distinct
boundary between the working material and the
artifact. the working material is continually
evolving into the artifact by stages of in-place
transformation. Just as software development can
be unending, this evolution can be unending.)

17 The fact that the designs of languages and tools are coupled
by the Modeless concept needs to be better understood.

© 2016 Melvin E. Conway - 8 - Date of pdf: 5/31/2017
Twitter: @conways_law

The Attributes of a Modeless Workflow
1. Unified. The artisan is not asked to alternate attention between “input” and “output”

conceptual domains of the software being built; the thing being manipulated and the
product are in the same conceptual domain. That is, there is no "source/object" duality.
A corollary necessary in order to simplify the overall process and eliminate debugger
glitches: The underlying application being built is isomorphic to what is in the artisan’s
hands.

2. Symmetrical. “Build” and “Run” are modeless. The tool and the application being built
are peers. The artisan’s next move can be on the user interface of either one or the
other.

3. Alive with actual data. The artisan is not asked to alternate attention between building
and testing. The working material exists with real data present; the effect on the
appearance to the user of a change to either working material or domain data is seen
or can be examined immediately.

4. Syntactically undemanding. The artisan is shown enough information to select
among self-explanatory choices. There is nowhere a requirement for text input
according to a formal grammar.

5. Immediate. Every modification the artisan makes to the working material is
immediately seen in its behavior. There is no perceptible delay introduced by a
translation phase.

6. Always on. During construction there is no concept of “starting the application”. When
a component instance is created in the workspace of the tool, it is already running, and
it continues to behave according to its definition. (See 5 above.)

7. Continuous. From one step to the next there is obvious continuity in the working
material’s behavior. Small changes lead to predictable outcomes.

8. Interactive. The result of each change helps to suggest the next change. The artisan’s
brain is unconsciously engaged with the working material, like a child playing with a
construction toy. (See 5 above.)

9. Transparent. The tool supports the illusion that it is invisible and the artisan’s hands
are directly on the working material. Metaphorically, the working material is embedded
in the hand-eye-brain feedback loop.

10. Inspectable. At any time all parts of the application can be inspected and the values
so obtained can in turn be inspected.

11. Intervenable. The artisan can modify any part of the application (provided that doing
so does not contradict the definition of an existing component used in the application).

12. Reversible. A good UNDO means no regrets.

© 2016 Melvin E. Conway - 9 - Date of pdf: 5/31/2017
Twitter: @conways_law

In attributes 1 and 3 the language “the artisan is not
asked to alternate attention between….” is a signal that
a mode is being avoided. The need to switch attention
betrays a mode that requires that the artisan’s state of
mind shift between user interfaces, languages, rule
sets, or conceptual domains.
Here are the alternations being avoided in the first four
attributes, cited by their numbers.

1. Unified: The alternation between the source
language, used to write the application, and
the target or execution language, used
during debugging.

2. Symmetrical: The edit-build (compile,link)-
run cycle. In the former the artisan is
working with a text editor and other tools; in
the latter the artisan is working with the user
interface of the artifact.

3. Alive with actual data: The build-test cycle.
This might differ from the above if the
artisan is working with test tools.

4. Syntactically undemanding: Command line,
shell, query, and scripting languages go
here. Also, the artisan might need to specify
individual parameters or function calls; this
requires learning the syntax and constraints
of each parameter or function call.

Ideally, in the absence of these (and possibly other)
modes the workflow is fluid, and each step is dictated
by the immediate (and partly unconscious) perceptions
of the artisan rather than a progression of mental state
changes from one frame of mind to another. This
absence of friction is, in my observation, a common
property of easy-to-use development environments.
The question is the extent to which the concept of
Modeless Workflow can be fully applied to the
development of business applications. This question
can only be answered by experience. I have a
prototype that demonstrates the first eleven of the
twelve attributes which, when it is reimplemented, will
be useful to test this question.

