
© 2017 Melvin E. Conway - 1 - July 22, 2017
Twitter: @conways_law

The Flow Object Pattern

This paper specifies the Flow Object Pattern. which defines the communication structure
of applications that are written in a wired-component language using a wiring tool that
complies with all the attributes of a modeless workflow. The Flow Object Pattern provides
components with access to application data visible to these components, it decouples
components from each other and from all other application data, and it provides a uniform
mechanism for synchronization of changed application data.

Motivation and an Example 2

Source-Object Isomorphism 2
An Example of a Wired Application 2
The Application’s Conceptual Model 4
There Are Four Layers In This Pattern 5

Description of the Pattern 7
Class Structure 7
Schematic Diagram of the Example 9

Messages in the Pattern 11
The push Message 11
Use Case: Edit a String 11
The Update Protocol 13

What Components Do 16
What Primitive Components Do 16
What Composite Components Do 16

© 2017 Melvin E. Conway - 2 - July 22, 2017
Twitter: @conways_law

Motivation and an Example
If

you build an application using the wiring model
(there is an example below)

and
the wiring tool you are using supports all the
attributes of a modeless workflow1

then
the structure of the underlying application
execution machine will necessarily be
isomorphic to the wiring diagram

and
this machine will be built on the Flow Object
pattern.

This looks like a rule, but it’s really just an observation
based on years of playing with these ideas. I have
found no other way to realize fully a modeless
workflow. Given that, the question arises: how does an
application structured this way work? The Flow Object
pattern contains the answer.
This paper describes the Flow Object pattern. It is
closer to a specification than an earlier paper that
describes the operation of the execution machine2.
The figure below is a screen shot from the working
wiring-tool prototype, with component numbers added
to support this description. The screen shot was taken
shortly after clicking “Moe” in the list box.
Both the left-to-right flow diagram (the “source
language” in conventional terminology) and the user
interface of the running artifact program are shown
side-by-side just as on the display of the tool, with the
artifact’s UI at the right.
In accordance with the “Symmetrical” attribute #2 of
the modeless workflow attributes, the wiring tool and
the artifact are peers, and the builder can click on the
UI of either one at any time.

1 http://melconway.com/Home/pdf/modeless.pdf page 8
2 http://melconway.com/Working/WP_9.pdf

Source-Object Isomorphism

An Example of a Wired
Application

© 2017 Melvin E. Conway - 3 - July 22, 2017
Twitter: @conways_law

Components 6, 7, and 9 are called “projectors”; they
have the particular responsibilities of rendering their
inputs on the user interface of the artifact. Component
9 projects the window frame, including the title bar
(and, if present, a menu bar), component 6 projects, in
the form of a list box, the collection appearing at the
sink (input) connector at its upper left, and component
7 projects, in the form of a text line, the selected string
appearing at its sink, in this case, “Moe”. This selected
string “Moe” is the output (at the lower source
connector) of the “Selector” component 5, which acts
like a rotary switch, implicitly and tightly coupled3 to
the projected list box. The upper source connector of
the Selector sources the collection
[“Larry”,”Curly”,”Moe”], and the lower source
connector sources the item selected, in this case
“Moe”, in the list box.
Component 4 is a “Collector” component, which
aggregates its inputs to create an indexed collection4.
Component 4 in particular is sinking three individual
string-valued objects and is sourcing the collection
[“Larry”,”Curly”,”Moe”]. Components 1, 2, and 3 are
“Text Source” components that source the literal
constants attached to the components by the builder.

3 The implicit coupling mechanism is the Update Protocol,
discussed below.
4 “Indexed Collection” is Smalltalk-speak for a linear structure
accessed by an integer value, frequently called an Array
elsewhere.

© 2017 Melvin E. Conway - 4 - July 22, 2017
Twitter: @conways_law

The implicit operation of the application conceptual
model is left-to-right flow of objects along the wires,
from source to sink. This conceptual model is
faithfully realized by the tool and the artifact according
to all the modeless workflow attributes5, but in fact
under the wraps there isn’t that much “flowing” going
on during the operation of the artifact.

1. In many cases, the Update Protocol in
particular, there is no flow at all but a sequence
of messages.

2. The application data objects are stationary and
never move along the wires; when a flow does
occur (expressed in the component code as a
“push” message to the source connector), a
reference is copied from the source to all
connected sinks.

3. Where flowing throughout the wiring diagram
does occur is at the time the application is
started. Then the source and sink connectors are
populated with object references. This
initialization establishes the initial connections
between components and data.

The object references in source and sink connectors
are not references to application data objects but
references to wrappers of application data objects
called flow objects.

How flow objects mediate the access and
modification of application data by components
in a way that effectively decouples these
components is an important consequence of the
Flow Object pattern.

There are two aspects to this conceptual model that
enable the design goal of practical multi-level reuse of
components built by encapsulation of wiring diagrams.

1. All components (via their connectors) see a
single interface to all application data objects,
presented by flow objects.

2. All flows are unidirectional, determined by the
two connector types, source and sink.

5 Ironically, the one attribute this prototype doesn’t implement is
the most common one: Undo.

The Application’s
Conceptual Model

© 2017 Melvin E. Conway - 5 - July 22, 2017
Twitter: @conways_law

We will describe these four layers using Collector
component 4 as a concrete example. Here is a partial
schematic drawing of the component and its four
layers. Only representative objects, but not all objects,
are show in the bottom three layers.

Function: The function of Collector is to create and
source an indexed collection whose elements are
derived from the component’s sinks. The first three
elements come from the top three sinks (if all inputs
are present). The fourth sink permits daisy-chaining
Collectors to create larger collections; it accepts an
indexed collection that is concatenated to the
collection created from the first three sinks.
Visibility: Each connector has an association to zero
or one application objects. The component body code
can directly address all the connectors attached to the
component. However, the component body code
cannot see the objects associated with these connectors
(i.e., the strings “Larry” “Curly” and “Moe” and the
output triplet) until it obtains references to them; then
it can send messages to these application objects. It
obtains these references from the respective
connectors. Specifically, sending the message target
to a connector returns a reference to that connector’s
application object.

There Are Four Layers In
This Pattern

© 2017 Melvin E. Conway - 6 - July 22, 2017
Twitter: @conways_law

Indirection through Wrappers: Wrappers provide a
layer of indirection between connectors and their
application objects. This indirection provides a
uniform interface between components and application
objects. Wrappers also manage synchronization of
application objects and their projections after receipt of
an event. This synchronization is inherited run-time
behavior that is not managed by the component body
code. It is discussed later in this paper under “The
Update Protocol”.
Wrapper structure: Every wrapper has three parts.

• Owner. This is the reference to the source
connector that created this wrapper; this is its
owner. Every wrapper has exactly one owner.

• Dependents. This is a list of zero or more
references to sink connectors. Dependents are
the sinks that must be notified if their
application objects change.

• Wrappee. This is the reference to the
application object.

Every wrapper wraps one application object, and each
application object referenced by a component is
wrapped by one wrapper.
If an application object is a collection or other
structure, the elements of the structure, rather than
being other application objects, will be wrappers
wrapping these application objects. This insures that
every application object, no matter how deeply nested,
is wrapped and can be synchronized.
In this example the source of the Collector component
indirectly references a 3-collection [“Larry”, “Curly”,
“Moe”]. The heavy dotted arrow in the figure shows
that the third element of the collection references, not
the string “Moe” but the wrapper of “Moe”. The light
dotted arrow shows that the source connector is the
creator and owner of this 3-collection.

© 2017 Melvin E. Conway - 7 - July 22, 2017
Twitter: @conways_law

Description of the Pattern

The class diagram of the Flow Object pattern is shown
here.

A component body (there are 9 of them in the above
example) can have any number of sink connectors
(conventionally shown at the component’s left) and/or
source connectors (conventionally shown at the right).
All the processing of application objects is embodied
in component bodies, implemented by sending
messages to application objects indirectly through
connectors and data wrappers. Each component body
can directly address only its connectors but does not
directly address flow objects.

Class Structure

© 2017 Melvin E. Conway - 8 - July 22, 2017
Twitter: @conways_law

Every connector knows about two objects: its
component body, and some flow object. In addition,
each source knows about a connection for each
attached wire. Each connector that references
Application Data (i.e., that does not reference the sole
Empty Wrapper6) must respond to a message (let us
call the message target) that answers the application
object indirectly referenced by this connector.
Each data wrapper references one application object.
Each data wrapper must respond to a message (let us
call the message yourData) that answers its
application object. The operation of the target
message sent to a connector, then, is to answer the
application object that is the result of sending the
yourData message to the data wrapper the connector
references. (Sending target to the sole Empty
Wrapper returns nil or something similar, depending
on the implementation.)
Owners and dependents exist to implement the Update
Protocol. Some sources are owners; some sinks are
dependents; these properties are given to connectors at
their creation according to the roles the connectors
play in their components. The role of a dependent is to
guarantee that it will be notified if its application
object changes so that its component can in turn be
notified and, if it chooses, reprocess its inputs.
Every data wrapper has exactly one owner and can
access it; the reference to its owner is created when the
data wrapper is created.
Every data wrapper has zero or more dependents. A
data wrapper first learns of a dependent the first time
(a reference to) it is copied to a sink that knows itself
to be a dependent; at that time the sink adds itself to
the data wrapper’s dependents collection. (Also at that
time the sink must remove itself from the dependents
collection of the data wrapper whose reference, if it
exists, is about to be overwritten.)

If an application object is a collection or
structure created by a component such as
Collector, and an element of the structure is
referenced by a data wrapper (this can be the
case with component 7 in the example) that

6 The Empty Wrapper denotes the absence of a wire on the
referencing connector or propagation of an empty input into a
component. When a component is first dragged onto the tool’s
workspace all its sink connectors refer to Empty Wrappers.

© 2017 Melvin E. Conway - 9 - July 22, 2017
Twitter: @conways_law

element must be wrapped. The Collector insures
this by sourcing and owning a new structure
whose elements reference the component’s
input wrappers.7
Because the number of levels of dereferencing
to reach an application object is unknown a
priori, indirection caused by wrapping of
application objects must be transparent. This is
insured as follows. Every operation of the code
in a component body that must be assured that
its operand is indeed an application object does
this, not by operating directly on it, but by
sending yourData to it and operating on the
result. In turn, the response of a data wrapper to
the yourData message is not to return its
application object but to return the result of
sending the yourData message to its
application object. This does not result in an
infinite loop because every object except a flow
object returns itself in response to the yourData
message; data wrapper returns the result of
sending yourData to its application object, and
Empty Wrapper returns nil.

The figure below shows the object references in the
example. (References from connectors to owned
wrappers are shown as heavy double arrows. Other
references from connectors that are not owners are not
shown.) When a source first creates a wrapper it makes
itself the owner of that wrapper.
There are five data wrappers; we can consider them in
three groups, bordered by heavier boxes.

1. The left three wrappers wrap the three strings.
2. The fourth wrapper wraps an indexed collection

object created by the Collector component. The
wrapper is owned by the source connector. The
elements of the indexed collection are
references to the wrappers at the three inputs of
the Collector.

3. The fifth wrapper wraps a selected collection
object created by the Selector component. The
wrapper is owned by the top source connector

7 There are scaling issues here that might require lazy evaluation
approaches in a real system. These issues are not addressed in
the prototype.

Schematic Diagram of the
Example

© 2017 Melvin E. Conway - 10 - July 22, 2017
Twitter: @conways_law

of the Selector. A selected collection object is
like an indexed collection object but with an
additional instance variable. This new instance
variable carries the index of the selected
element, which is projected by the list box as a
contrasting color in the selected line of the
displayed list.8 A change to the selection
(caused by clicking on a new line in the list
box) is a change to this object; this change
triggers the Update Protocol.

Note that the lower source of the Selector component
is not an owner. If the selection in the list box changes,
the Selector component pushes the newly selected
wrapped element of its input collection out this source.
This wrapper contains the reference to its owner, in
this case the source connector of the Text Source
component. This flow-through without ownership is
what makes the use case below work.

8 In this Smalltalk implementation indexed collections are 1-
based.

© 2017 Melvin E. Conway - 11 - July 22, 2017
Twitter: @conways_law

Messages in the Pattern
The effect of sending push to a source is to copy the
source’s Wrapper reference to every connected sink,
and to cause the sink’s component to recomputed
using the new input.
When a source receives a push it sends a transmit
message to every associated connection, with the
source’s Wrapper reference as an argument. The
connection then sends a receive message to its
associated sink, with the same Wrapper reference as an
argument. The sink then assigns the Wrapper reference
to itself; if the sink is a dependent it must first remove
itself from the dependent list of the Wrapper whose
reference is about to be overwritten and then add itself
to the dependent list of the new Wrapper. Then the
sink sends a compute message to its component body.
This use case is interesting because it shows that there
is only one copy of the string “Moe” in the combined
wiring tool/artifact system. In this example the
projection by component 7 of the string “Moe” will be
edited.
Component 7 permits editing. In the case of this
component, the user confirms the edit by striking the
Enter key. The figure below shows the display after
the string “Moe” in the top text line of the artifact’s UI
is edited by removing the final “e” and striking the
Enter key.

The push Message

Use Case: Edit a String

© 2017 Melvin E. Conway - 12 - July 22, 2017
Twitter: @conways_law

If you consider the tool and the artifact to be one
program (they are9) you see that the single underlying
string “Mo” has three projections that must remain
synchronized:

1. The text line projection (in the artifact’s UI)
created by component 7,

2. The list-box projection (in the artifact’s UI)
created by component 6, and

3. The text projection inside the component icon
(in the tool’s UI) created by component 3.10

9 The design provides for separating the artifact into a free-
standing application. The separation is cleaner than in Smalltalk.
See http://melconway.com/Working/WP_9.pdf
10 In the current prototype the tool is built in Smalltalk.
Bootstrapping the tool using itself is a longer-term goal. When
this happens the wiring workspace of the tool’s user interface
will be a projection of a wiring-diagram object. Every
Component in the wiring diagram will be responsible for
projecting its own icon, and a connection will project as a wire.

© 2017 Melvin E. Conway - 13 - July 22, 2017
Twitter: @conways_law

The Update Protocol is a sequence of messages that
assures synchronization of an application object and all
its projections.11 It comprises messages 6 through 12
of the following sequence diagram.

In this example the user edits the text projected by
component 7. Usually a User Interface Management
System (UIMS) does this in a buffer normally hidden
to the projector code. The UIMS immediately renders
changes the user makes to the text. Then the user
submits an event (the Enter key), which causes
projector component 7 to obtain the current text value
from the UIMS and trigger the Update Protocol,
propagating notice of the modified data to all
dependents.

1. This is the user interacting with the text via the
UIMS.

2. Steps 2 and 3 comprise the function of the
target and yourData messages. The projector
code sends the target message to its sink
connector, which sends the yourData message
to its data wrapper.

3. The yourData message returns to the sink
connector a reference to the application
object12, and the target message returns that
to the projector code.

11 Viewing the operation of the Update Protocol more generally,
it brings the wiring diagram viewed as a constraint network
back into equilibrium after an event.
12 In a pure object-oriented language such as Smalltalk it is said
that “everything is an object”. In truth, everything that the code
touches is a reference to an object, so “a reference to” is dropped as

The Update Protocol

© 2017 Melvin E. Conway - 14 - July 22, 2017
Twitter: @conways_law

4. When the string projector component 7 receives
the confirming Enter event from the UIMS, it
obtains the current value of the string from the
UIMS and sends a message to the application
object, setting it to this value, using the
reference obtained in step 3.

5. The projector sends the beginUpdate message
to the sink, which starts the Update Protocol.

6. The sink sends a notifyOwner message to the
data wrapper. (Before doing that the dependent
sink sets a flag that will block double rendering;
see step 12.)

7. The data wrapper sends an ownerBeNotified
message to the owner.

8. The owner sends a processEvent message to
its component’s code interior. At this point the
component’s code interior has the option of
reacting to the user event. This normally occurs
only if the application object being projected is
a Do-It13. If it is a Do-It, the user event is a pick
of the Do-It’s projection and step 8 causes the
interior of the owner component to perform the
pick action.

9. This is the return from the processEvent
message.

10. The owner sends a notifyDependents
message to the data wrapper.

11. The data wrapper sends a
dependentBeNotified message to each of its
dependents.

12. For each dependent: if the flag is not set the
dependent sends a compute message to its
component’s interior, which accesses the data

endlessly redundant. More to the point, the subject of
programmer documentation is function, not implementation,
and dererencing does not participate in the function, only the
implementation. (This is a source of difficulty to beginners
because the same object can be in many places at the same time.)
In pure OO-speak this sentence would say that the target
message returns the application object.
13 A Do-It is an application object whose projection is a clickable
object. Clicking on this projection then causes some “pick action”
to occur. In this manner the introduction of the Do-It type in
connection with the Update Protocol obviates the need for right-
to-left flows for handling user events like button and menu
clicks.

© 2017 Melvin E. Conway - 15 - July 22, 2017
Twitter: @conways_law

via the dependent (see steps 2-3) and refreshes
its projection if it is a projector. If the flag is set
all that happens is that it is reset.

This description accounts for component 7 and similar
projectors to be updated. However, other updates
might be necessary, for example the line in the list box
projected by component 6. Here is how that happens.
The data wrapper for the string “Mo” has two
dependents; the other one is the third sink of Collector
component 4. In step 12 above this sink sends a
compute message to the Collector component body.
This causes it to recompute its output.14,15 This causes
the source of component 4 to push its new output to
component 5. component 5 then recomputes, and the
push then goes to component 6, which recomputes and
re-renders the list box.16

14 This causes another flurry of messages, and eventually the
network settles down in its new state. This is discussed in more
detail in “Component Computation Scheduling, pages 13-14 of
http://melconway.com/Working/WP_9.pdf . In developing this scheme
I was inspired by Alan Borning’s iterative constraint-solution
work with ThingLab https://github.com/cdglabs/thinglab .
15 There are optimization opportunities here. The response to
changing the application object value of one input to a Collector
should not be so drastic as the response to adding another input to
a Collector (when a wire is added). In this former case, changing
the Collector input does not need to produce a push, but only a
partial Update Protocol beginning with step 10 from its source.
The Collector is able to make this distinction.
16 In this use case (in which the input collection itself is
unchanged and the selection is not changed) there is no change
at the second Source Conncetor of Component 5. (Because of the
different types of change that can occur the Selector is one of the
most difficult components I’ve encountered.)

© 2017 Melvin E. Conway - 16 - July 22, 2017
Twitter: @conways_law

What Components Do
Almost all component types are pure functions. That
is, they compute values based on their inputs and they
source these values directly.
The contract that specifies the output(s) of a function
as determined by its input(s) is often called its transfer
function. I’ll use that term here.
Components fall into two broad groups.

1. Primitive components: The component body is
built from code. This code defines the transfer
function of the component. All of the preceding
description is about primitive components.

2. Composite components: The component as it
appears in the tool’s wiring workspace is an
encapsulation of a wiring diagram that was built
in a wiring tool, encapsulated, and added to a
library. Then the component was pulled from
the library into the workspace.

There is a small, well-defined message protocol
between the bodies of primitive components and the
connectors seen by these components. This message
protocol is the interface that the code of primitive
component bodies must support. It is shown in this
figure.

Composite components are convenience creations that
effectively implement abstraction and multiple-level
component reuse.17 Appearing in the wiring tool’s

17 Notice the parallel to Smalltalk methods; primitive
components are analogous to Smalltalk-80 primitive methods,
which are implemented in code. Just as Smalltalk-80 is based on
a set of primitives whose size is O(27), my goal is that the wiring
model will be analogous. The effort to bootstrap the tool will be
the test of this goal.

What Primitive Components
Do

What Composite
Components Do

© 2017 Melvin E. Conway - 17 - July 22, 2017
Twitter: @conways_law

workspace they act as shorthand proxies for wiring
diagrams. Their behaviors are described here.
We can think of a composite component as having an
inside and an outside. The inside of a composite
component is a wiring diagram. The outside of a
composite component is a set of (zero or more) sources
and (zero or more) sinks that follow the same wiring
rules in the tool’s workspace that sources and sinks of
primitive components do.
Connectors on the outside of composite components
do not send or receive messages, they cannot be
owners or dependents, and they do not participate in
the Update Protocol. What they do is re-route
connections.
Each connector on the outside of a composite
component is paired one-to-one with a special
connector component on the composite component’s
inside. Each sink connector is paired with its own sink
connector component. Each source connector is paired
with its own source connector component. The
relationship between a connector and its connector
component can be depicted as follows. (The heavy
lines between the connectors on the outside and the
connector components on the inside are not wires; they
are just graphic elements showing a relationship.)

Notice that the sink connector component has a source
connector that can be wired in the interior wiring
diagram, and the source connector component has a
sink connector that can be wired in the interior wiring
diagram. How these internal connectors are wired
defines the connections between the inside and the
outside of the composite component.

© 2017 Melvin E. Conway - 18 - July 22, 2017
Twitter: @conways_law

Connector Functional Specification:18 Sink and
source connectors on the outside of a composite
component together with their corresponding internal
connector components do not participate in flows; they
define wiring connections between primitive-
component connectors in the inside and primitive-
component connectors on the outside of the composite
component. This will be described now.
First, let’s review the wiring rules.

• A connection connects one source connector
and one sink connector.

• A sink connector can have zero or one
connection.

• A source connector can have any number of
connections, including zero.

The following figure shows how the connections
between outside connectors and inside connectors are
defined. The solid wires are what the person building
the application sees in the wiring tool. The dotted
wires are the connections that the execution machine
sees and executes. Of course if no wire is connected to
the outside connector then there is no rerouting.19

18 When a wiring diagram is encapsulated and put into a library
it is given outside connectors in exact correspondence with the
connector components in the wiring diagram. After the library
component is added to a wiring workspace this rerouting occurs
when a wire is added to or removed from an outside connector.
Keep in mind that, except for these changes, connections inside a
composite component are immutable.
19 This functional specification can be directly implemented.
This implementation has the performance advantage that the
time it takes a sink to execute a receive is independent of the
number of “walls” (layers of abstraction) through which the flow
goes. There is a simpler implementation that does not have this
advantage in which the sink executes the receive by sending a
push to the source on the other side of the wall.

