

© 2016 Mel Conway 1 January 3, 2017
Twitter: @conways_law
#HumanizeTheCraft

Toward Simplifying Application Development,
in a Dozen Lessons

Mel Conway

It has taken me over fifty years to learn these lessons about simplification of
application building. This paper describes how the lessons showed up.

 Incentives Affect the Product: The Origins of Conway’s Law
Lesson 1: You can make it even simpler if you keep working at it.
Lesson 2: If you want the cleanest possible product you have to find the simplest

possible design before organizing to build, or else you have to be prepared to
reorganize.

 Partition the Solution
Lesson 3: Expressive domain-specific intermediate languages can give the combined

solution a lot more bang for the buck.
 Static Is Good
Lesson 4: Making application development accessible to a large number of people with

general educations requires elimination of algorithms.
Lesson 5: The set of all applications can be partitioned into classes defined by their

underlying algorithms; an effective application language for each class
presents a static parameterization of the implicit run-time algorithm.

Lesson 6: One purpose of an application-development language that is meant to be
both simple and powerful is not to express algorithms, but to hide them.

 Simplify the Developer’s Life
Lesson 7: Give the developer immediate feedback.
Lesson 8: Don’t make the developer distinguish between “programming” language and

“execution” language; forcing this duality increases the cognitive load and
introduces distracting artifacts into the development process.

 Humanize the Craft
Lesson 9: Event-driven applications can be described with unidirectional flow diagrams.
Lesson 10: The way to make application development universally accessible is to

harness the tremendous investment Nature has made in every person’s
hand-eye-brain system.

Lesson 11: The input-process-output application-building model must be replaced by a
transform-in-place model.

Lesson 12: To simplify application development to the point of being accessible to the
entire population, the tools must act like hands-on tools.

 The Eleven Properties of a Hands-on Tool, and Experimental Development
 Epilogue, Revision history

Incentives Affect the Product: The Origins of Conway’s Law
I was a graduate student at Case Western Reserve University between 1956
and 1961. That was the time when digital computers started replacing
punched cards in IT shops. Because computers were so new there were few
programming tools, mostly assemblers, written by the hardware
manufacturers; it would be another decade before IBM unbundled its
software, creating an independent software market. So the Case Computing
Center, where I lived when I wasn’t in class, was involved in compiler

© 2016 Mel Conway 2 January 3, 2017
Twitter: @conways_law
#HumanizeTheCraft

research. One thing we noticed was how clunky the tools being written by
the manufacturers were compared to the stuff we were making. That was the
first hint that the nature of the design organization influences the designs it
produces. As I learned later, sometimes the influence is the training or
world-view of the designers and sometimes it is the structure of the design
organization itself.
During that period, in 1959, the first draft of the COBOL language
specification came out. From the implementor’s point of view it was a pig of
a language, and the manufacturers and Government agencies populating the
specification committee apparently envisioned compilers that looked like
multi-phase magnetic tape sort-merge data-processing runs. I thought we
could do better and I took on the challenge of designing a one-pass COBOL
compiler. I finally published the details in 1963, after I left Case and was in
the Air Force. The two papers1,2 described four innovations; they were
recognized as a game-changer and influenced the compilers of several
manufacturers. During the struggle to produce this design I learned
Lesson 1: You can make it even simpler if you keep working at it.
After graduating I spent 1962 and 1963 in the Air Force Electronic Systems
Division, where I had a view of many of the Air Force’s large-system
procurements. That’s where a perverse design cycle slowly became clear:
risk avoidance and managerial empire-building lead to an overly large
estimated project size, which rules out simpler designs that might be
implemented on a smaller budget. In addition, humiliation and the
(sometimes incorrect) belief that time would be lost if a project was
reorganized had the effect of locking in the original design. Freezing the
initial design flies in the face of Lesson 1; often it is only by trying to build
something that you learn that it doesn’t work very well and there is a better,
simpler design. Arriving at a simpler design can suggest simplifying the
organization and reducing the budget, which can be contrary to conventional
incentives in an organization.
There were two rules in Government procurement that tended to degrade the
products: waterfall design, and arms-length hand-off between the phases of
the waterfall with separate procurements for each phase. Hardware and
software procurements were independent, with hardware chosen first; this

1 “Design of a Separable Transition-Diagram Compiler” http://melconway.com/Home/pdf/compiler.pdf
2 “Arithmetizing Declarations: An Application to COBOL” http://melconway.com/Home/pdf/arithmetizing.pdf
2 “Arithmetizing Declarations: An Application to COBOL” http://melconway.com/Home/pdf/arithmetizing.pdf

© 2016 Mel Conway 3 January 3, 2017
Twitter: @conways_law
#HumanizeTheCraft

often meant that the software people were handed a target computer that was
far from what might have been chosen had they been permitted to participate
in developing the requirements.3
The Government lawyers required these arms-length hand-offs to avoid real
conflicts of interest in procurement, but the rules were producing
unanticipated consequences that could lead to lower quality.

My own experience as a practitioner was exactly contrary to the Government
practice: if I know I’m going to have to build the thing I’m going to put in the extra
work to make building it simpler. (On the other hand, if I’m an ambitious manager,
simplifying my project and reducing its budget might run contrary to my interests.)

After leaving the Air Force I tried to make sense of my experiences, and I
set out to understand how the natural incentives of risk avoidance, defensive
staffing, and arms-length waterfall procurement acted perversely to degrade
quality. I found that there is a one-way mapping we can call “designed-by”
that goes from each part of the system being built to the design group that
designs this part. That’s true by definition, and the following principle
derives naturally from the realities of how systems are built:

The principle: If part A and part B of a system have to interface, then the designer
of A (call it dA) and the designer of B (call it dB) have to communicate in order to
agree on the interface specification. The “designed-by” mapping also applies to
interfaces; the interface between A and B maps into the subgroups of dA and dB
that negotiate the interface specification. If you follow this logic as you scale up
your view to the whole system, you see that “designed-by” is a structure-
preserving relationship that goes from all parts of the network that is the whole
system to all parts of the network that is the whole design organization.4

3 The waterfall process produces several products along the way, including both specification documents
and software. Conway’s Law applies to each in turn, as well at to the entire waterfall itself.
4 This relationship is one-to-one (bidirectional) only if each design team designs exactly one part of the
system. This is why a mapping always exists from system to designer but cannot always exist in the other
direction.

© 2016 Mel Conway 4 January 3, 2017
Twitter: @conways_law
#HumanizeTheCraft

Eventually I put these observations into a paper that was published in 19685.
The fact that “designed-by” suggests an arrow going from the system to its
designer is contrary to the obvious and intuitive causal relationship that the
design organization determines the structure of the system. That’s true; the
design organization does determine the structure of the system. But the mere
act of organizing the design group has already influenced the design:

Every organization choice rules out some design choices. If we determine the
structure of the design organization first, certain system structures that don’t map
to the design organization’s communication structure cannot be pursued by the
design organization because the communcation paths don’t exist.

Hence Lesson 2: If you want the cleanest possible product you have to find
the simplest possible design before organizing to build, or else you have to
be prepared to reorganize.
Conway’s Law is often simplified (by me as well as others) to: “Any
organization that designs a system (defined broadly) will produce a design
whose structure is a copy of the organization's communication structure.”
This is a suggestive qualitative simplification of the principle stated above.

So how do you use it? The importance of the principle as a guide to action is not
that your design organization determines the things you can design; as a guide to
action, that’s not particularly useful. The importance of the principle as a guide to
action is that you need to know that your design organization is keeping you
from designing some things that perhaps you should be building. The principle
creates an imperative (1)to keep asking: “Is there a better design that is not
available to us because of our organization?” and (2)to be open to changing the
organization if a better design is found.

When a large software project was being planned, one of the first tasks was
typically to scope the budget by estimating the magnitude of the work and
planning for resources. Note that the construction effort is typically sized
before the design is settled; I noticed this on multiple occasions. In the
construction of mission-critical applications, particularly early in the history
of software after a few big failures, risk avoidance was a major
consideration. There was a tendency to overstaff projects defensively. This
was before (and, regrettably, also after) Fred Brooks wrote “The Mythical
Man-Month”6 in which he described IBM’s painful lesson while building
OS/360 that adding people to a project that was late invariably slowed it

5 “How Do Committees Invent?” http://melconway.com/Home/Conways_Law.html
6 Frederick P. Brooks, Jr. The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition,
Addison-Wesley Professional, 1995

© 2016 Mel Conway 5 January 3, 2017
Twitter: @conways_law
#HumanizeTheCraft

down. This was an alien idea for industrial-age managers who had learned
that people were production units that could be piled on like bricks; hence
Brooks’s title.
I remember a case in which a company put out a bid for a compiler. There
were two responses, one by a large corporation and one by a small group
whom I knew well. I knew that the small group, which bid a much lower
price, was expert at this kind of work. The big corporation got the job. It was
clear what was operating: there was a fear of failure by the buyer. If the
small company failed it was evidence of poor judgement on the part of the
person who made the purchase decision. If the big company failed it was
evidence that the problem was indeed a difficult one. Everybody understood:
“Nobody ever got fired for choosing IBM.”
Partition the Solution

From the very beginning my greatest interest has been understanding why
writing software was hard for some people and impossible for most others,
and then doing something about that. This led to a learning process that has
continued to the present. I think that my approach to the problem has been
the result of an unusual beginning.
When I started in 1956 the dominant record-processing technology was
punched cards. There was no such thing as computer science, so I had to be
in the Math department. The education level of the workers in a typical
business IT shop was at the 4-year liberal-arts college level or less. Job
training was provided by IBM. Files were decks of cards, with one card per
record (if possible). File-processing functions, such as sorting, merging and
separating files, and printing/totaling, were built into machines dedicated to
each function. Setting up a processing run such as monthly utility billing
consisted of choosing a sequence of machines to run the files through, and
having an appropriate wiring panel for each machine. Wiring a wiring panel
was not what we now call programming; it was mainly identifying the data
fields on the cards used by each machine.
When stored-program computers arrived they were pretty wimpy by today’s
standards. The three computers I programmed at Case were vacuum-tube
machines with typically about ten thousand characters of memory. To do
any reasonable work the programmer’s challenge was to stuff twenty pounds
of computation into a five-pound bag. People trained in file processing
turned big jobs into multi-stage file processing runs. People with some

© 2016 Mel Conway 6 January 3, 2017
Twitter: @conways_law
#HumanizeTheCraft

mathematical training devised other strategies such as inventing a concise,
domain-specific interpreted language whose interpreter would sit in the
computer memory alongside the data being processed. In this case the
technical challenge was devising a language expressive enough that, after
subtracting the space occupied by the resident interpreter, the net amount of
computation was substantially increased. I saw an excellent example of this
on the IBM 650, my first machine.7,8
The 650’s working memory was a 2000 ten-digit-word magnetic drum that
rotated at 12,500 RPM; the sound of the drum was a loud squeal you just
had to get used to. Bell Labs (remember them?) wrote, and IBM distributed,
the Bell Interpretive System for scientific computation.9 This provided a set
of two- and three-address mathematical operations executed by an
interpreter that occupied 1000 of those 2000 words. It implemented floating-
point aritmetic and a complete set of transcendental functions, none of which
were native to the 650’s instruction set. A lot of computation could be done
in the remaining 1000 words. This was a breakthrough in increasing access
to scientific computing. My first IT job was as an IBM trainee supporting
the 650 installation at Cleveland Pneumatic Tool, the manufacturer of
Boeing 707 landing gear. When I was there the 650 spent its time chugging
away at large matrix inversions. My exposure to the Bell System led to
Lesson 3: Expressive domain-specific intermediate languages can give the
combined solution a lot more bang for the buck; I have drawn on this
lesson repeatedly.10,11
Static Is Good
The arrival of magnetic-tape stored-program computers to replace whole
punched-card shops (most importantly, the IBM 1401, the first mass-
produced transistorized computer for business applications)12 required the
conversion of the IT labor force from wiring panel wirers and card machine
operators to programmers. IBM devised an ingenious tool called RPG
(Report Program Generator) that required very little training over and above
wiring skills. I studied RPG and learned Lesson 4: Making application

7 http://www.columbia.edu/cu/computinghistory/650.html
8 http://en.wikipedia.org/wiki/IBM_650
9 http://bitsavers.informatik.uni-stuttgart.de/pdf/ibm/650/28-4024_FltDecIntrpSys.pdf
10 Example: Byte-coded transition-diagram syntax definition of COBOL used for parsing source code:
http://melconway.com/Home/pdf/compiler.pdf
11 Example: Boolean matrix representation of COBOL Data Division semantics:
http://melconway.com/Home/pdf/arithmetizing.pdf
12 http://www.columbia.edu/cu/computinghistory/1401.html

© 2016 Mel Conway 7 January 3, 2017
Twitter: @conways_law
#HumanizeTheCraft

development accessible to a large number of people with general
educations requires elimination of algorithms. Sequential planning is hard
for a lot of people.
Powerful domain-specific application languages like RPG are mostly static
modifications of a built-in run-time process that is the same for all
applications in the problem domain. In the case of RPG and other file-
oriented report generators of the time the underlying process was the logic of
the record-processing loop. Other examples of this principle (and the
corresponding underlying algorithm) were IBM’s Query By Example (SQL
execution) and the user-interface builder in Microsoft’s Visual Basic (the
event loop). Hence Lesson 5: The set of all applications can be partitioned
into classes defined by their underlying algorithms; an effective
application language for each class presents a static parameterization of
the implicit run-time algorithm.
Lesson 6: One purpose of an application-development language that is
meant to be both simple and powerful is not to express algorithms, but to
hide them, makes explicit that application-development languages and
programming languages belong to different species.
Simplify the Developer’s Life

Until time sharing came along a single application-development iteration in
a large shop typically involved an overnight turnaround from submission of
a source-program card deck to receipt of a printout with the output of the
program under test. The “operating systems” of the day queued up input
source programs followed by their data for later compilation and execution
one at a time. The word “interactive” had not yet been applied to computers,
and programming was a cumbersome process with a 24-hour cycle time. Our
experience with one-pass compilers taught us Lesson 7: Make the
programmer more productive by giving him or her immediate feedback.
One-pass compilers (and the BASIC interpreter) plus the introduction of
time sharing for on-line character-terminal access transformed turnaround
times from overnight to often less than a minute.
As a consultant in the 1970s one of my clients was Monroe calculator, where
I was exposed to programmable calculators. The “programming language”
of a programmable calculator is the same keyboard the operator uses to
solve arithmetic problems; the only difference is “learn mode,” in which the
machine captures the sequence of keystrokes the operator enters to solve a

© 2016 Mel Conway 8 January 3, 2017
Twitter: @conways_law
#HumanizeTheCraft

problem and then repeats the sequence on command.13 This led to Lesson 8:
Don’t make the developer distinguish between “programming” language
and “execution” language; forcing this duality increases the cognitive
load and introduces distracting artifacts into the development process.
In the early 1980s a startup I helped form applied Lessons 3, 7, and 8 to the
construction for Apple of Mac Pascal, which compiled line-by-line during
text entry, effectively eliminating the compile delay. What made Mac Pascal
possible was a compact “tokenized” internal representation of the Pascal
program that could be translated back to the Pascal source text and was in
practice indistinguishable from the source text, while executing at an
acceptable speed. A free byproduct of this design was single-stepping and
breakpointing, all at the source level, and on-demand execution of Pascal
expressions during debugging.14,15 Users’ experience of Mac Pascal (and
similar experiences elsewhere) raised the bar for programming tools;
immediate turnaround, the elimination of debugger artifacts, and transparent
source-level debugging became the state of the art. The profession was
learning the importance of taking human factors into account in the
development process.
Humanize the Craft

The introduction of the Macintosh and Windows in the early 1980s was a
painful disruption to the programming community. Developers had to
change their application models from run-to-completion or wait-for-the-
next-input to event-driven applications in which the program gave up
control, waited for the next user event, and then executed a process
determined by that event. Tools like Microsoft Visual Basic helped to reboot
the application-development process; they applied Lessons 4 and 5 to user-
interface design by offering the application developer a static pictorial user-
interface builder. I began to wonder: do these same lessons suggest a static
representation for the whole of an event-driven interactive application? The
obvious answer being pursued at the time was the dataflow (wiring or
plumbing) network. A complication was that in a network with data sources

13 I found FORTH to be a particularly interesting example of learn mode:
http://en.wikipedia.org/wiki/Forth_(programming_language) .
14 The 16-bit internal token language, which was derived from the formal definition of Pascal, was another
example of a Lesson-3 domain-specific intermediate language that augmented the power of the tool within
the memory constraints of the ealy Mac.
15 Two more Lesson-3 examples: as with COBOL, the Pascal syntax was byte-coded for parsing by a
syntax engine, and the entire analysis-code generation process was driven by a byte-coded stack machine.

© 2016 Mel Conway 9 January 3, 2017
Twitter: @conways_law
#HumanizeTheCraft

at one end and the user interface at the other, there were flows in both
directions: data toward the user interface, and events away from the user
interface. You could devise a wiring language to do that (teams at IBM and
Apple, among others, did) but there were practical problems. The biggest
obstacle was reuse: building new wired components by encapsulating
already-created wiring diagrams and reusing them in unanticipated contexts.
It wasn’t fruitful. The fact that data flows and event flows were different
types and went in opposite directions made the encapsulation of wiring
diagrams into reusable components that were broadly useful practically
useless. One obvious solution was to combine data and events into a single
type with a single connector type, but this led to bidirectional flows and
terrible complexity problems in implementation. After literally years I found
a hybrid solution in Lesson 9: Event-driven applications can be described
with unidirectional flow diagrams. The wiring connectors on components
handled only unidirectional data. Event messages were not part of the flows
but were hidden, and their paths were implied by the data paths.16
 Now the problem was: what kind of an executing program does such a
flow language translate into? I could imagine a diagram-to-code translator,
but compiling a flow diagram into a conventional program would violate
Lesson 7: make the internal and the external representation of the program
the same. I needed an execution engine that was a flow network, so I created
one. I built a prototype wiring/execution tool on a laptop and started
showing it around. When I showed up at the large corporations such as Sun
and IBM I was confronted with the usual sign-in form at the reception desk
that says: Anything you show us belongs to us unless you have previously
disclosed it. Realizing that a flow-based computer was indeed an invention, I
solved the prior disclosure problem by patenting the prototype’s execution
engine17.
Two events over 30 years apart combined to reframe the inquiry in more
humane terms.

1. In the 1970s my wife and I were involved in the formation of two
private primary schools whose educational philosophies were inspired
by the work of primary-education pioneers such as Maria Montessori

16 Event flows were rendered unnecessary by the addition of one data type; see
http://vimeo.com/151020589 . (Time: 25:58)
17 US patent 6,272,672 “Dataflow Processing With Events” https://www.google.com/patents/US6272672

© 2016 Mel Conway 10 January 3, 2017
Twitter: @conways_law
#HumanizeTheCraft

and Georges Cuisenaire. That’s where I learned that the path to a
child’s brain is through the hands.

2. A few years ago I had an epiphany while watching a baby grandchild
struggling to grab a Cheerio and put it in his mouth: I was witnessing
one step in the years-long process of building the hand-eye-brain
system built into every human.

After the Cheerio incident I realized that coding at a keyboard is an
unnatural act, and something different needs to replace it if we are to
humanize application building. The turning point was Lesson 10: The way
to make application development universally accessible is to harness the
tremendous investment Nature has made in every person’s hand-eye-brain
system.
Why universally accessible? Why not just more accessible? One simple
answer is that it’s just a research tactic: force yourself to think outside the
box by shooting for the moon.
So the goal then became: make application development accessible to
everyone. That suggests it’s going to be taught in primary school. We have
three important examples of key technologies that started as the property of
priests (in the case of software, that’s us): arithmetic, writing and calendar.
They are now taught in first grade. These powerful existence proofs offer
hope that the goal is approachable for software.
Primary-school children are a useful target audience because (1)they stand
as a concrete proxy for the population as a whole, and (2)Montessori and
Cuisenaire have given us powerful guidance for this group: make it hands-
on.
In order to move away from thinking about coding at a keyboard I started to
think in terms of hands-on artisans. The picture of the potter at her wheel
presented itself; this is what building software as a hands-on activity might
feel like. What guidance does this image give us?
Certainly, the file-oriented input-process-output
model we have taken for granted in the
development process doesn’t represent the potter at
all well. Yet the input-process-output model is
importantly embedded in our history; consider
compilers, sequential file processing, and Unix
pipes. But we must abandon this model; hence

© 2016 Mel Conway 11 January 3, 2017
Twitter: @conways_law
#HumanizeTheCraft

Lesson 11: The input-process-output application-building model must be
replaced by a transform-in-place model. Instead of source and object files
we should be thinking in terms of modifying the working material in stages.
Lesson 12: To simplify application development to the point of being
accessible to the entire population, the tools must act like hands-on tools.
What does that even mean in the case of software?
The Eleven Properties of a Hands-on Tools, and Experimental
Development

Spending time playing with my prototype gave me more insights into the
hands-on application development process. I learned that the concept of
“starting” a program is alien to the transform-in-place model; as soon as you
drag a component onto the workspace, even before you attach the first wire,
it is running. Attaching or removing a wire changes an input to a component,
and the consequences of that change ripple though the network.18 This (plus
a few other rules) guarantees that the behavior of the application under
construction and its appearance will remain in sync in response to every
change to the application. This continual synchronization between the model
that you have your hands on and the outputs of the executing application
makes it possible for the model to be a convincing proxy for the application.

18 The implicit underlying process for this class of applications is the scheduling algorithm that brings the
network back into equilibrium.

© 2016 Mel Conway 12 January 3, 2017
Twitter: @conways_law
#HumanizeTheCraft

A hands-on construction tool will have the following eleven properties.
1. Unified. There is only one program representation, no "source/object" duality.
2. Symmetrical. The tool and the application being built are peers. Your next move

can be on the user interface of either one or the other.
3. Choosing over Composing. You are never asked to construct grammatical

input; rather you are shown enough information to make a selection among
choices presented to you.

4. Always on. When a component instance is created in the workspace of the tool,
it is already running.

5. Inspectable. All parts of the application can be inspected and the values so
obtained can in turn be inspected.

6. Intervenable. Provided that doing so does not contradict the definition of an
existing component used by the application, you can modify any part of the
application.

7. Immediate. Every modification you make is immediately reflected in the behavior
or the program you are building.

8. Predictable. No surprises. Small changes lead to predictable outcomes.
9. Transparent. The tool supports the illusion that it is invisible and you have your

hands directly on the working material.
10. Interactive. You are in an easy dance with the tool and the working material, like

a child playing with a construction toy.
11. Reversible. You can undo your most recent changes.

These eleven design principles for a hands-on tool, when combined with the
unidirectional flow application model, summarize my current thinking about
humane application building.
If well executed, a tool based on these principles will support and encourage
an experimantal development style. There is an important corollary to these
design principles that must be experienced to be appreciated:

Taken together, these principles make possible routine development
with live data. Developing with live data qualitatively changes the
concept of experimental development.

With live data flowing through the construction tool, I am finding that my
workflow is becoming more “childlike”, and I can play around with the
near-bulletproof flow model just to see what happens. This is hacking in its
original sense. On reflection I find this to be OK; it tells me that the tool is
becoming more friendly to my target audience.

© 2016 Mel Conway 13 January 3, 2017
Twitter: @conways_law
#HumanizeTheCraft

Epilogue
The next step of my research is to apply this set of insights to current
thinking about distributed applications. My prototype started as a monolithic
application. I have modified it to the extent that the user interface
components now can run in a web browser rather than being integral to the
construction tool, with the rest of the wiring diagram sitting behind a web
server. The challenge is now to generalize the wiring connections so they
work over sockets or any other messaging medium.

This is the current challenge: the developer must be able to build
interactively any application whose components can be anywhere on the
network and that is represented in its entirety on the user interface of a
tool that conforms to all the hands-on design principles.

• • •
Of the twelve lessons presented in this paper, the first is the most important:

You can make it even simpler if you keep working at it.

The journey described in this paper is the best proof I can offer of the power
of this lesson. The twelve lessons appeared, one by one, over a half century,
culminating in the unidirectional flow model and the hands-on design
principles.
The task has only begun. Here is the long-term goal:

A single developer will be able to wrap her mind around,
and build, a system of any size that has, and can keep, integrity.

Whether or not this goal will ever fully be reached, it is the North Star I
believe we can use to guide our research.

Revision History
November 15 2016 version: the list of properties of a hands-on construction tool has been expanded from 6 to 8.
December 7 2016 version: the list of properties of a hands-on construction tool has been expanded from 8 to 10, and the
discussion of experimental development style is expanded to include using live data.
January 3, 2017 version: the third design princople is added.

