

© 2018-2019 Melvin E. Conway - 1 - Date of pdf: 2019-01-02
Twitter: @conways_law

Building Applications Becomes Simpler
and More Accessible In a Two-sided Market

Preface on simplification: When it comes to building software, the meaning of
“simplification” depends on context. Please consider here how my thinking about
simplification has evolved.
I started with the assumption that there is something more to learn about simplification.
There is historical evidence for this assumption. Arithmetic, calendar, and writing
started off centuries ago as the properties of priest classes, and now they are taught in
primary school. The ability to build and understand the workings of software
applications is still the property of a priest class; that tells us how far we have to go.
I have assumed that the simpler something is, the more people there will be who
understand it. Until a few years ago I defined “simple” to mean “it should join
arithmetic, calendar, and writing as part of the primary-school education”. Having
learned that the route to a child’s mind is through the hands, I concluded that the model
of building software that best matches the way we are all built is not a symbolic but a
manual model. I see a potter at the wheel rather than a geek at the keyboard. This has
led to a set of humane design principles for the application-building process that have
governed my work.1 Given the premise of radical simplification, this in turn led to a
rejection of text languages. What I have come to realize after looking back on my
discovery of the “editor hypothesis”2 in the 1980s is that using terms like
“programming” and “programming language” imposes a seriously limiting bias on
thinking about simplifying building business applications.
Then, my exposure to Domain-Driven Design changed the subject from teaching
children to building business applications, where there are two important populations
of interest: developers who understand the technology, and business people who
understand the need but are excluded from important stages of the building process.
There is a consensus among many observers that this exclusion of business people from
all but the earliest stages of application building has exacted a high price in terms of
failure to build correct and timely solutions.
I realize now that seeking to make things so simple that non-programmers can build
business applications by themselves, or that all parts of the application must be
simplified, is misguided. If there is an approach to advancing universal accessibility it
lies in collaboration. This has led to a two-part application model; one part has to be
built by developers but the other part can be built by non-programmers. I now have a
candidate for such a model3 that I believe is worth taking to the next stage.
Furthermore, I believe this construction model can be implemented as a web-based
two-sided market that benefits from network effects.

1 http://melconway.com/Home/pdf/humanedozen.pdf
2 I describe the editor hypothesis in the paper.
3The most recent demo (consider it to be a placeholder) is at http://melconway.com/talks/2018_gotober/

© 2018-2019 Melvin E. Conway - 2 - Date of pdf: 2019-01-02
Twitter: @conways_law

Clarification: The word “platform” has acquired two different meanings in the software community.

1. The older meaning: A platform is a technical setup in which software or other technology is
executed or built, for example, a “software development platform” or a “Platform as a
Service”.

4

2. A more recent meaning, coming up fast since the advent of social networks: A platform is the
intermediary in a two-sided market:

5
 an economic environment in which two distinct groups of

participants (sometimes called producers and consumers) exchange value via the
intermediary. A distinctive characteristic of a two-sided market is that it benefits from network
effects;

6
 that is, adding consumers makes participation more valuable to producers, and vice

versa. Examples of platforms range from weekly village farmer’s markets to social networks.

In this paper the definition we use is the second, two-sided-market, definition.7

Foreword.
Multiple “low-code” and “no-code” offerings that simplify enterprise application
development are coming on strong.8,9 Most address professional developers10,11; a few
primarily address what are being called “citizen developers”12, technical contributors
who are not necessarily programmers but who help build applications within the
enterprise setting13.
By contrast, what I’ll be describing here is envisioned as a sub-enterprise, open-market-
based approach, in which the participants don’t have to know each other or work in the
same organization. It is motivated primarily by the goal of universal accessibility. The
introduction strategy proposed here is bottom-up, minimum-viable-product14.
Here is the reasoning on which this paper is based. The goal is to give an important part
of the application-building process to non-programmers who want to build something
useful in a way that (1)is simple enough to be accessible to almost everybody, and
(2)gives them the part of the application that they know most about, the use-case-
intensive part (as distinguished from business-rule- or infrastructure- intensive parts).
This is done collaboratively; programmers and non-programmers build their different
parts separately within a Web-based platform that enables the synthesis of both.
Furthermore, this is done in a way that engages programmers and non-programmers in

4 https://en.wikipedia.org/wiki/Platform_as_a_service
5 https://en.wikipedia.org/wiki/Two-sided_market
6 https://en.wikipedia.org/wiki/Network_effect
7 An excellent reference: G. Parker, M. Van Alstyne, S. Choudary (2016), Platform Revolution: How
Networked Markets Are Transforming the Economy - and How to Make Them Work for You. New York: W. W.
Norton
8 Gartner: http://melconway.com/Working/WP_17.pdf
9 Forrester: https://reprints.forrester.com/#/assets/2/225/'RES137262'/reports
10 Salesforce: https://www.salesforce.com/
11 Mendix: https://www.mendix.com/
12 https://www.gartner.com/it-glossary/citizen-developer/
13 Betty Blocks: https://www.bettyblocks.com/
14 https://en.wikipedia.org/wiki/Minimum_viable_product

© 2018-2019 Melvin E. Conway - 3 - Date of pdf: 2019-01-02
Twitter: @conways_law

a two-sided market such that, given good management of the platform, network effects
incentivize both to participate.
As the paragraph above suggests, the approach is to repartition the work of building a
whole application into two barely coupled parts: a domain-knowledge-intensive part
built by software developers, and a use-case-knowledge-intensive part built by non-
programmers. The effect of this repartitioning is depicted in the following figure.

I have demonstrated the technical feasibility of this repartitioning15. The key element is
the Visual Service Interface (VSI) between the two parts. How the VSI transforms the
use-case builder’s experience of an API in the domain-knowledge part is analogous to
how Windows and Macintosh transformed the computer user’s experience of the
command line: it presents code as dialog windows presenting choices, greatly
simplifying the experience and making it accessible to many more people.

15 See, for example, http://melconway.com/talks/2018_gotober/

© 2018-2019 Melvin E. Conway - 4 - Date of pdf: 2019-01-02
Twitter: @conways_law

After the repartitioning, the people building the use-case-knowledge-intensive part
have a much simpler job; developers have a little more to do, but I expect this to be
compensated by increased reusability of their work.
The major technical pieces are now in place to build a platform-based two-sided market
that will enable these two classes of participants to collaborate in building interactive
business applications. The “platform” is a drag-and-drop wiring tool whose
“producers” are software developers who build software “domain objects” accessed by
some of the wired-up components, and whose “consumers” do the wiring.
The argument of the paper, that there is potential for the creation of new economic
activity, is built on two ideas:

1. Inventions that enable two communities to collaboratively build something
(where they previously couldn’t because of incompatible disciplines) can lead to
new economic activity. The beginning of the paper reviews the history of the
microprocessor as a model of this process. It then finds three enabling conditions
of these inventions, which it then applies to the present invention.

2. The present invention is a repartitioning of business applications as described
above, together with an interface (the VSI) between the two parititions that
enables collaborative building between developers and non-programmers who
work within the platform.

The structure of the invention is captured in Figure 5 (page 15), and the three enablers
in the invention are listed on pages 16 and 17.

© 2018-2019 Melvin E. Conway - 5 - Date of pdf: 2019-01-02
Twitter: @conways_law

Table of Contents
History…6

Here is some personal technology history. I’ll be generalizing from this later.
Personal Recollections…6
The “Two-sided Market”…8
 Figure 1: Two-sided Market…8
The Microprocessor Revolution…10

Enablers for Technology-driven Two-sided Market Creation…11
Here the emphasis shifts from a singular focus on inventions (“artifacts”) to a dual focus on artifacts and
on the communities of builders (“artisans”) from which the artifacts emerge.
1. The invention of an interface mediating the collaboration of two communities previously
unable to collaborate…11
2. A consequent business restructuring…11
3. An economic or technological shift that greatly enlarged the number of particiants…11

Wiring is a Connection, Not a Programming, Language…12
Here we start building the case that the designs of interactive computer systems serving transaction-
oriented businesses can be partitioned into two parts: a business-object-knowledge-intensive part that
embodies the data and rules specific to the business, and a use-case-knowledge-intensive part that
embodies the interactions between the system and its human users.
 Figure 2: Simple Model of Interactive Business Application…12
 Figure 3: Use Case Realizations are Business-object Editors…13
The Editor Hypothesis…13
 Figure 4: The Two-faced Application Model…14
 Figure 5: Wiring-platform-based Application Development Process…15

Creation of a New Two-sided Market…16
The platform of Figure 5 satisfies the list of enablers derived from the history of the microprocessor as
the basis of a new technology-based two-sided market.
1. The invention of an interface mediating the collaboration of two communities previously
unable to collaborate…16
2. A consequent business restructuring…16
3. An economic or technological shift that greatly enlarged the number of particiants…17
Consumers Can Also Be Producers…17

Growing the Platform…18
This section envisions the life cycle of the platform, from a tenuous beginning to a stable state.
Early adopters…18
Vertical Markets…18
Democratizing Application Development…19

Endnotes…18

© 2018-2019 Melvin E. Conway - 6 - Date of pdf: 2019-01-02
Twitter: @conways_law

History
Here is some personal technology history. I’ll be generalizing from this later.

In the early 1970s I was building digital-to-video
medical image converters of my own design out of
Transistor-Transistor Logic (TTL)1. That was when
Intel was introducing the first microprocessor chipset,
called the MCS-4, based on the 4004 central
processing unit2. I needed to build a magnetic-tape
controller for my CAT-scanner viewers and I tried to
figure out how to use the MCS-4, but its tooling wasn’t
intended for a lone inventor working out of a bedroom,
so I built a TTL state machine instead. That way the
only additional tooling I needed was a small ROM
programmer, with which I could write the program of
my state machine into programmable ROMs, four
toggle switches at a time.
There were other single-chip processors around then.
They were typically used as embedded equipment
microcontrollers. With the MCS-4, however, Intel
made a decision to build a chipset with the architecture
of a programmable computer to meet a requirement
(for a calculator) that could have been satisfied by a
more specialized device. This decision to favor a
device whose function was defined, not in an Intel
factory but by software that could be changed by the
customer after manufacturing, was validated as other
Intel customers found uses for this new
microprocessor.3
Those few years in the early 1970s began a revolution
in how control of manufactured equipment is
implemented. Since then equipment has been
continually getting smarter and smarter, using more
and more software.4
It took a decade before Intel’s decision led to the IBM
PC, which was based on a distant successor of the
MCS-4. Concurrently, MOS Technology was building
the brilliantly simple 65025, the basis of the Apple II.
Later, Motorola built the 680006, the basis of the
original Macintosh.
The PC prevailed largely because of network effects:

1. The Apple II was a hobby until the first
spreadsheet, VisiCalc7, was built for it.

Personal Recollections

© 2018-2019 Melvin E. Conway - 7 - Date of pdf: 2019-01-02
Twitter: @conways_law

2. The utility in business of the Apple II/VisiCalc
bundle became obvious quickly, and people
started buying them for their offices, something
they could expense without corporate IT
approval because the price was below the
approval threshold.

3. IBM and its corporate IT clients saw this
incursion of the Apple II as a threatening
bureaucratic workaround, which caused the first
IBM PC to be rushed out.

4. VisiCalc was ported to the PC but was quickly
superseded on the PC by Lotus 1-2-3, a superior
product that included database and graphing
features.

5. IBM’s entrenchment in corporations, the
number of PCs (and compatibles), and the
ability to write applications across them all due
to MS-DOS and PC-DOS compatibility drove a
positive feedback loop in application
development/computer demand that led to the
dominance of the PC architecture.

6. Microsoft then finessed IBM out of the OS
market8 and carefully migrated its DOS users to
Windows. It’s estimated that Windows
currently has about 83% of the desktop OS
market.9

VisiCalc transformed the Apple II from a hobby toy to
a business machine; it demonstrated the importance of
the “killer app” as a nucleus in seeding market
creation. The effect that the Apple II/VisiCalc bundle
had on industrial IT is a powerful illustration of
Clayton Christensen’s model of disruption.10,11

© 2018-2019 Melvin E. Conway - 8 - Date of pdf: 2019-01-02
Twitter: @conways_law

The resulting PC desktop application-software market
is an instance of a two-sided market12,13.

Paraphrasing Wikipedia: “A two-sided market”, also
called a two-sided network, is a set of economic
activities having two distinct user groups, mediated
by an intermediary, that provide each other with
network benefits. The intermediary that enables
interactions between the users in the two groups is
called a “platform”.

We need a diagram with more specificity. Here is one:

Figure 1
Two-sided Market

The following parts of a two-sided market are in
Figure 1. (We’ll use a credit-card platform for
illustration.)

1. The Platform. Its three parts will be described
below.

2. The Producers. (Vendors accepting the credit
card.)

3. The Consumers. (Purchasers with accounts.)
4. The Producer-Platform Interface. The set of

facilities provided by the platform that
Producers must employ in order to participate.
(Includes operating card readers, window
decals, and payment services.)

The “Two-sided Market”

© 2018-2019 Melvin E. Conway - 9 - Date of pdf: 2019-01-02
Twitter: @conways_law

5. The Consumer-Platform interface. The set of
facilities provided by the platform that
Consumers must employ in order to participate.
(A credit-card and related account, for
example.)

6. The Platform Infrastructure. (Includes payment-
transfer, logging, and reporting services.)

7. The Producer-Consumer transactions between
the participants, through each of which each
participant derives value. (Credit-card
purchases.)

A stable market exists due to network effects within
the two populations that provide incentives to
participate. Often the network must be seeded on one
side first; this then draws participants on the other side.
A “killer app” can act as a nucleus that seeds the
positive feedback loop. My recollection: American
Express seeded the credit card market with business
travel purchases: initially, airline tickets, hotels, and
restaurants.
In the case of the PC software application market,
these are the relevant parts.

1. The Platform is the PC with its operating
system.

2. The Producer is an offerer of a software
application product.

3. The Consumer is a potential application user.
4. The Producer-Platform interface is the

operating system’s API to which the application
conforms.

5. The Consumer-Platform interface is the set of
user-interface and other data exchange services
provided by the operating system, as used by
the users.

6. The Platform Infrastructure is the set of
standards that insures compatible
interchangeability of PC hardware and software.

7. The Transactions are the purchases/licenses of
the applications.

© 2018-2019 Melvin E. Conway - 10 - Date of pdf: 2019-01-02
Twitter: @conways_law

Now let’s go back to the microprocessor story. So
something big happened in the early 1970s14. The
semiconductor industry’s decision to craft a maturing
semiconductor chip technology in a new direction, a
software-based computer architecture, led to two
industrial paradigm shifts:

• a revolution in how manufactured equipment is
controlled, from mechanical, hydraulic, and
electromechanical to software, and

• a new economic activity: development of
computer software applications for independent
multiple deployments at consumer scale.

Each of these created its own two-sided market.
Intel’s decision to build a general-purpose
programmable device wasn’t obvious at the time.
There is an anecdote15 that a proposal made to
Robert Noyce16, a cofounder and executive of Intel,
to build a processor chip for a desktop personal
computer was met with resistance. The basis of
Noyce’s resistance was that each such computer
would have only one processor chip, while it could
have many memory chips, and Intel was in the
memory-chip business. What Noyce may be
forgiven for not having seen at the time was that
this new device would lead to a whole new category
and scale of economic activity. This new economic
activity ultimately pulled Intel out of the
increasingly competitive low-margin memory-chip
business into leadership in the microprocessor
business.

The Microprocessor
Revolution

© 2018-2019 Melvin E. Conway - 11 - Date of pdf: 2019-01-02
Twitter: @conways_law

Enablers for Technology-driven Two-sided Market Creation
Here the emphasis shifts from a singular focus on inventions (“artifacts”) to a dual focus
on artifacts and on the communities of builders (“artisans”) from which the artifacts
emerge.

In my view the microprocessor revolution arose from
the coincidence of three qualitative changes,
enumerated here.
The computer instruction set is an interface between
two communities.
John von Neumann’s invention of a digital computer
whose control program is data stored in the same
memory as the data being operated on17 changed by
orders of magnitude the ease of interoperation of
technologies understood within two distinct
communites:

• people who understood digital electronics
(“hardware”), and

• people who understood discrete mathematics
(“software”).

Before this invention these two communities did not
collaborate because they spoke the languages of
different disciplines. Thus, where there was previously
no way for the artifacts of these two communities to
interoperate, the invention of an instruction set that
could be instantiated as data in memory of the
computer became an interface not only between their
respective artifacts but between the communities
themselves, enabling the construction of more complex
systems combining hardware and software.18
The invention of the instruction set as interface
induced the creation of two distinct business activities:

• manufacturing stored-program computers with
standardized instruction sets, and

• writing software programs to be loaded into the
memories of these computers19.

By 1970 Moore’s Law20 had progressed to the point
that programmable digital computers could be put on
monolithic silicon chipsets, and systems based on
these chipsets could be built at costs enabling their
sales to consumers.

1. The invention of an
interface mediating the
collaboration of two
communities previously
unable to collaborate

2. A consequent business
restructuring

3. An economic or
technological shift that
greatly enlarged the number
of particiants

© 2018-2019 Melvin E. Conway - 12 - Date of pdf: 2019-01-02
Twitter: @conways_law

Wiring is a Connection, Not a Programming, Language

Here we start building the case that the designs of interactive computer systems serving
transaction-oriented businesses can be partitioned into two parts: a business-object-
knowledge-intensive part that embodies the data and rules specific to the business, and a
use-case-knowledge-intensive part that embodies the interactions between the system
and its human users.

This section describes a departure in my thinking
about business applications that occurred in the 1980s.
Setting it out here can help in two ways:

1. It describes the reasoning leading to the “two-
faced model” I have described elsewhere and
will revisit below.

2. It helps to motivate the wiring model as the
favored representation of code-free business
use-case interactions.
I view wiring not as an alternative
programming language but as a static
expression of a set of (sometimes bidirectional)
connections between business data and
projections of those data on a user interface.
This is what an editor is.

Consider a typical interactive business application, for
example in distribution. It is, essentially, an active
intermediary between the business objects that carry
the state of the business and the mechanisms that
control the interactions with users.

Figure 2

Simple Model of Interactive Business Application

© 2018-2019 Melvin E. Conway - 13 - Date of pdf: 2019-01-02
Twitter: @conways_law

Corresponding to the ways that businesses organize
their workers, these user interactions can be grouped
by department, for example, ordering, billing,
shipping, receiving, payroll, etc., and each department
contains a collection of department-specific use cases.
At any moment, each interaction is engaged in the
realization of one use case:

Figure 3
Use Case Realizations are Business-object Editors

On the surface of each user interface are (possibly
user-changeable) projections of parts of the business
objects. Thus we have:

• Every interactive business system is a collection
of interactive use-case realizations.

• Each such interactive use-case realization is a
business-object editor.

This is the organizing principle that led to the wiring
model.

The Editor Hypothesis

© 2018-2019 Melvin E. Conway - 14 - Date of pdf: 2019-01-02
Twitter: @conways_law

Now reconsider the two-faced application model21.
Figure 4 here changes the language a bit to conform to
the current discussion.

Figure 4

The Two-faced Application Model
Note the structural similarity to the two-sided market
shown in Figure 1. This is no accident. Here is the
correspondence:

Two-faced application Two-sided market

Coded domain object Producer

Wired use-case realization Consumer

Visual APIs22 Platform

Service calls from wired gateway
components to domain objects

Producer-Consumer
Transactions

There is a subtle inconsistency here, though: on the
right the Producer and Consumer are people. On the
left the domain objects and use-case realizations are
software.

© 2018-2019 Melvin E. Conway - 15 - Date of pdf: 2019-01-02
Twitter: @conways_law

This inconsistency is our opening to distinguish
between the two phases of the life cycle of a product:

• The design phase, during which the artisans are
active, and

• The operation phase, during which the artifacts
are active.

The way we resolve this distinction into a single
concept is to elaborate on the two-sided market
diagram in Figure 1, showing in Figure 5 below both
life-cycle phases. In the process we will choose some
suggestive names, revealing the structure of a
platform-based two-sided market in the design phase.
What might not be obvious to some readers is that both
phases occur together side by side in the wiring tool
because the tool conforms to the Humane Dozen23.

Figure 5
Wiring-platform-based Application Development Process

Can the creation of value in the form of executable
wiring diagrams that employ services from domain
objects be the basis of a viable two-sided market?
We’ll address this question next.

© 2018-2019 Melvin E. Conway - 16 - Date of pdf: 2019-01-02
Twitter: @conways_law

Creation of a New Two-sided Market
The platform of Figure 5 satisfies the list of enablers derived from the history of the
microprocessor as the basis of a new technology-based two-sided market.

Here are the enablers of a two-sided market created by
the emergence of a new technology; we derived these
before from the history of the microprocessor.
The two communities are software developers
(primarily concerned with the technology) and
business people (primarily concerned with economic
activity potentially supported by computer
technology). The latter are typically non-programmers.
The business people create executable wiring diagrams
in a code-free drag-and-drop wiring tool. The wiring
diagrams consist of components dragged out from
component palettes; these components have source and
sink connectors, and the wirers can draw wires
between the connectors. Each wire denotes a flow of
an object from a source to a sink. Some of these
objects can be domain objects obtained from Gateway
Components.
Some Gateway Components accept Domain Objects at
their sink connectors. On the wirer’s request, an input
Domain Object to a Gateway Component (using the
services of the VSI) will reveal its API in a dialog-
based form that I call the Domain Object’s
dashboard.24
The platform includes the two-sided VSI definition
whereby domain objects built by developers using
their own tools can be accessed by Gateway
Components to:

1. Display the input domain object’s dashboard,
and

2. Build the operation-phase service request to the
domain object.

If the platform is built and managed correctly, network
effects will induce developers to build domain objects
and business people to build wiring-diagram-based
applications. Freemium pricing arrangements and an
initial inventory of free domain objects and wired
components (yet to be defined) will induce business
people to build things they want and developers with
specific domain knowledge to embody that knowledge
in domain objects.

1. The invention of an
interface mediating the
collaboration of two
communities previously
unable to collaborate

2. A consequent business
restructuring

© 2018-2019 Melvin E. Conway - 17 - Date of pdf: 2019-01-02
Twitter: @conways_law

The two-part application model partitions the
application-building process in such a way that the
code-free wiring part will be accessible to almost
everyone. From my research on simplification I
believe that this part can be made close to universally
accessible.25 It is an appropriate model for business
people and others to build descriptions of user
interactions, which is a natural starting point when
experimentally building an application. The Gateway
Component is wired like every other component and
offers a low-friction connection to the more
sophisticated services offered by domain objects.
The platform has the ability to encapsulate a wiring
diagram, turn the result into a wired component, and
add that to a component palette; I have demonstrated
the feasibility of this. Wired components produced this
way will be indistinguishable to the consumer from
wired components produced by coding.
In addition to encouraging consumers to become
producers, this ability supports consumer-side network
effects, for example among business people
collaborating on an application. These people need not
be in the same organization but might be in an affinity
group; thus the platform could be managed to support
an enlargement and partitioning of the open-source
process to include non-programmers building wiring
diagrams for the library.

3. An economic or
technological shift that
greatly enlarged the number
of particiants

Consumers Can Also Be
Producers

© 2018-2019 Melvin E. Conway - 18 - Date of pdf: 2019-01-02
Twitter: @conways_law

Growing the Platform
This section envisions the life cycle of the platform, from a tenuous beginning to a stable
state.

I visualize managing the platform to conform to
Christensen’s model of disruption26. At this time I
imagine three stages of the platform’s life cycle. These
are discussed in the following subsections: early
adopters, vertical markets, and democratizing
application development.
This stage begins with a minimum viable platform that
is valuable to one or more communities of early
adopters. A tight feedback loop between the platform
and its users grows the platform in directions
suggested by the usage patterns.
At this stage pricing is free, but the intention to
introduce freemium pricing for the benefit of owners
of software that can be converted to proprietary
domain objects should be stated, in order to begin
conversations with these owners.
Wrapped office applications. Horizontal office
applications such as a document editor, a spreadsheet,
and a relational database27 should be wrapped in order
to make them accessible in the platform as sources of
business objects to Gateway Components. Ideally a
system such as Apache OpenOffice will have an API28
that can be encapsulated for this purpose.
Initial consumers will include enthusiasts, educators,
experimenters, and opportunistic system integrators
who see the platform as a rapid-application-
development tool.
Internet of Things. The standardized VSI presents the
opportunity to build cross-manufacturer IoT
applications. I see an opportunity to wrap the drivers
of a variety of widely-used devices as domain objects
and offer a control-panel builder that integrates the
devices of different manufacturers.
There is a large vertical-industry software business29,30
that has captured and mechanized in application
software knowledge of numerous market segments. I
posit here that repackaging this knowledge in domain
objects in the proposed platform is a more productive
repository for this knowledge because it frees the
knowledge from specific applications, making it

Early adopters

Vertical markets

© 2018-2019 Melvin E. Conway - 19 - Date of pdf: 2019-01-02
Twitter: @conways_law

reusable in multiple use cases. This raises the
unanswered question: how to provide incentives for
the people with the knowledge to liberate it in this
way. Part of such an incentive structure would be
pricing that compensates for the loss of application
sales and offers an enlarged market because of the
broader utility of the repackaged knowledge.
There is also the option to choose a promising vertical
industry and contract with an expert in that industry to
build seed domain objects.
We might find that some vertical markets are served
by system integrators that mediate between vertical-
industry-software vendors and end users. Repackaging
industry knowledge as domain objects in the platform
can empower these system integrators to enlarge their
offerings, customize them, and mix offerings from
different manufacturers.
In the longer run I see some descendant of this
platform or something similar restructuring
application-development practitioners into two
communities: producers (domain-object builders) and
consumers (both programmers and non-programmers).
This will move us one step closer to universal
accessibility of software understanding.

1 https://en.wikipedia.org/wiki/Transistor-transistor_logic
2 https://en.wikipedia.org/wiki/Intel_4004
3 This delayed-binding-as-enabler meme shows up in many different places and deserves its own
theory. As a placeholder, consider http://melconway.com/talks/2018_gotober/ .
4 The Lockheed-Martin F-35 Joint Strike Fighter is the poster child of this trend: “Maintenance
personnel have discovered that it is often possible to correct deficiencies in the F-35, which is a
software-defined aircraft, simply by rebooting the aircraft's software and onboard systems.”
(Emphasis mine.) https://en.wikipedia.org/wiki/Lockheed_Martin_F-35_Lightning_II
5 https://en.wikipedia.org/wiki/MOS_Technology_6502
6 https://en.wikipedia.org/wiki/Motorola_68000
7 https://history-computer.com/ModernComputer/Software/Visicalc.html
8 http://web.mit.edu/shabby/www/nytos2.html
9 https://www.statista.com/statistics/218089/global-market-share-of-windows-7/
10 Clayton M. Christensen (original publication 1997), The Innovator's Dilemma: When New
Technologies Cause Great Firms to Fail. Harvard Business Review Press
11 https://www.newyorker.com/magazine/2012/05/14/when-giants-fail
12 https://en.wikipedia.org/wiki/Two-sided_market

Democratizing Application
Development

© 2018-2019 Melvin E. Conway - 20 - Date of pdf: 2019-01-02
Twitter: @conways_law

13 G. Parker, M. Van Alstyne, S. Choudary (2016), Platform Revolution: How Networked
Markets Are Transforming the Economy - and How to Make Them Work for You. New York: W.
W. Norton
14 Something else big happened then. As you read on you might suspect with me that there is
more going on than mere temporal coincidence: https://www.epi.org/productivity-pay-gap/
15 https://history-computer.com/ModernComputer/Basis/microprocessor.html
16 https://en.wikipedia.org/wiki/Robert_Noyce
17 https://en.wikipedia.org/wiki/Stored-program_computer
18 Von Neumann’s original justification for putting control instructions in memory was a
technical one: doing so permitted creating programs whose behavior was data-sensitive, for
example convergent iterations. I assert that today the principal justification has changed to an
economic one: delayed binding, which is what has enabled the software business.
19 However, it took an antitrust lawsuit to break IBM’s cross-subsidization that had been
blocking this:
https://en.wikipedia.org/wiki/History_of_IBM#1969:_Antitrust,_the_Unbundling_of_software_and_services
20 https://en.wikipedia.org/wiki/Moore%27s_law
21 http://melconway.com/talks/2018_gotober/09.html
22 http://melconway.com/talks/2018_gotober/10.html contains an informal description. The developer of a
service call writes a single method for each service that, when called by a gateway component,
opens a sequence of dialogs, also built by the developer.
23 http://melconway.com/Home/pdf/humanedozen.pdf
24 http://melconway.com/talks/2018_gotober/21.html shows an example of summing the items in a
shopping cart.
25 I have demonstrated a wiring tool that fulfills 11 of the 12 principles of
http://melconway.com/Home/pdf/humanedozen.pdf , and the 12th, Undo, will be straightforward.
26 Clayton M. Christensen, op. cit.
27 In http://melconway.com/talks/2018_gotober/17.html I show what the dashboard of the SQL Select verb
might look like.
28 http://www.openoffice.org/api/
29 Estimated by Bowery Capital at $122B: https://bowerycap.com/blog/insights/vertical-market-software/
30 A suggestive list of vertical markets is at https://www.g2crowd.com/categories/vertical-industry

