
© 2018 Melvin E. Conway - 1 - Date of pdf: 7/10/2018
Twitter: @conways_law

Nonprogrammers Can Build Important Parts of Prototypes

Abstract: Here is a two-part whole-application model that enables
nonprogrammers who understand the client business to participate importantly in
application prototyping.
The main part of the model is an executable skeleton of the application. It
describes one or more use cases, including user presentations and interactions,
and is built without code using an interactive wiring tool. The skeleton is
separated from the business-domain-specific part, which is created by
collaborating developers, by an API layer that (1)helps to isolate domain-specific
behaviors from the wiring diagram, and (2)is usable within the code-free wiring
tool.
This model has promise for building prototypes and monolithic applications in
general, but it should be of particular interest for empowering domain experts in
Domain-Driven Design teams to participate fully in prototyping.

Domain-Driven Design Presents a Prototyping Opportunity 2
The Case for a Two-Part Model 4
The Two-Owner Application Model 5
Demonstration 8

	 	

© 2018 Melvin E. Conway - 2 - Date of pdf: 7/10/2018
Twitter: @conways_law

My work has focused on simplification of the
conceptual model of interactive applications. Its
current results can be summarized in these two parts:

1. Twelve	principles	of	humane	application-
building	language-tool	design.1		

2. The	design	and	preliminary	implementation	
of	an	interactive	wiring-model	application-
building	tool	as	a	usable	embodiment	of	
these	principles.2	

In August 2016 Mathias Verraes3 invited me to speak
at DDD-Europe 2017. He introduced me to Eric
Evans4 and I set out to read Eric’s book, Domain-
Driven Design5, whose thesis is at the heart of DDD-
xxx conferences.
I am going to simplify the DDD thesis here for the
sake of my present argument:

To capture the complexity of a client
organization in a software design requires a
design team in which developers and expert
representatives of the client business (“domain
experts”) are collaborating peers in every
respect. In particular they must learn to speak of
the details of the organization’s behavior, and
design the corresponding domain objects,
precisely in a language of their own devising
and specific to the organization.

Preparation for DDD-Europe led me to think about
prototyping as a concrete opportunity for
simplification. My assumption is that prototyping is
one stage in the progression from design to
construction, and quick-turnaround prototypes that
have correct function can add value by improving
communication between the client organization and
the design team, both with respect to speed and
accuracy.
	 	

1 http://melconway.com/Home/pdf/humanedozen.pdf
2 See the 6 ½-minute video at https://vimeo.com/275108662 for the
most efficient presentation of the wiring model to date.
3 https://twitter.com/mathiasverraes
4 https://twitter.com/ericevans0
5 https://domainlanguage.com/ddd/nontechnical-path-through-the-book/

Domain-Driven Design
Presents a Prototyping
Opportunity

© 2018 Melvin E. Conway - 3 - Date of pdf: 7/10/2018
Twitter: @conways_law

Opportunity: Can the mutuality that exists in the
domain-object design stage be extended to
prototyping?
Problem: The peer relationship between the carriers of
technical knowledge and of business knowledge that
exists in the domain-object design stage typically
breaks down in the transition from design to
prototyping because the business experts don’t have
the skills to participate in prototype construction as
peers with the developers. The collaboration barrier in
the figure below represents this obstacle.

	

Inquiry: Is there a way the wiring model, up to this
time only an object of research, can be extended to
building usable application prototypes employing real
(or approximate) domain objects? Doing so could
extend the peer relationships between domain experts
and developers into the prototyping stage. This
extension is represented below. Note the double arrow
that suggests that design and prototyping are a fluid
continuum.

	
	 	

© 2018 Melvin E. Conway - 4 - Date of pdf: 7/10/2018
Twitter: @conways_law

	
When	I	built	the	first	version	of	the	shopping	cart	in	
my	restaurant	demo,	I	needed	a	way	to	add	up	the	
total	prices	of	all	the	items.	So	I	built	a	wired	
component	that	iterates	over	a	collection	and	a	
wired	component	that	adds.	That	was	the	point	at	
which	I	realized	that	adding	functionality	like	this	
degrades	the	inherent	simplicity	of	the	wiring	
model.	I	had	added	iteration	and	arithmetic	and	I	
was	on	the	slippery	slope	toward	an	algorithmic	
language	that	fewer	people	could	use.		I	also	saw	
how	domain	logic	was	leaking	into	the	wiring	
diagram.		
The	following	graph	qualitatively	plots	
programming	language	power	against	accessibility	
to	the	general	population.6	It	illustrates	the	futility	
of	trying	to	meet	both	of	the	following	two	goals	
with	a	single	language:	

1. Everybody	can	use	it.	
2. It	can	do	everything.	 	

6 Apologies to the FP folks; I’m not there yet.

The Case for a Two-Part
Model

© 2018 Melvin E. Conway - 5 - Date of pdf: 7/10/2018
Twitter: @conways_law

The vertical axis represents the fraction of the
population that can use a language. The horizontal axis
represents the demands on the language, and
correspondingly, the cognitive demands on the users of
the language.
The messages from this graph are:

1. Domain	experts	can	do	wiring,	but	once	they	
get	into	algorithm	territory	they	bog	down.		

2. Object	languages	can	do	everything	but	
domain	experts	can’t	use	them.		

One approach to involving domain experts in
prototyping is to partition the building of the
application so that:

1. the	domain	experts	and	the	developers	do	
what	they	are	respectively	best	at,	

2. there	is	a	technical	interface	between	their	
parts	that	allows	them	to	cooperate,	and	in	
particular,	

3. that	is	consistent	with	their	work	in	
designing	the	domain	objects.	

	
The two-owner application model is my current
realization of this approach. It enables domain experts
to build prototypes in a no-code wiring language, in
collaboration with developers, by connecting certain
wired components to the domain objects built by these
developers. These “gateway” components are
connectors between the wiring-diagram use-case
model and the domain-object model. Their use in
wiring diagrams is the means by which the domain
experts build prototypes that validate the domain-
object design.
They implement the “full-service API” pattern7. Full-
service APIs

1. cleanly	separate	the	workspaces	of	
developers	and	domain	experts,	and	

2. act	as	a	barrier	blocking	leakage	of	domain-
object	behavior	into	the	wired	use-case	
model.		

7 http://melconway.com/Home/pdf/fullserviceapi.pdf

The Two-Owner Application
Model

© 2018 Melvin E. Conway - 6 - Date of pdf: 7/10/2018
Twitter: @conways_law

Here is a schematic diagram of the two-owner model
of an application.

Explanation of the schematic diagram. This is a
structural model. It does not represent certain
functional relationships; for example, wiring is not
represented. However, if the model represents an
actual application in development, each part references
some concrete object in some development tool. For
example, the circles reference domain object classes,
the squares reference full-service APIs, and the long
rectangles reference wired components in a wiring
tool. This is an umbrella model that can encompass the
tools used both by domain experts and developers.
The horizontal dotted interface layer separates the
worlds accessed by domain experts (above) and
developers (below). The full-service APIs connect
gateway components and domain objects. These APIs
have user interfaces in gateway components within the
wiring tool, and developers build them. They
implement the precise domain-object services
negotiated within the design team.
The tree structure above the dotted line expresses the
containment relationships among component instances.
Primitive components (those built with code) are on
the bottom row. Composite components encapsulate
the components below them in the tree. The root of the

© 2018 Melvin E. Conway - 7 - Date of pdf: 7/10/2018
Twitter: @conways_law

tree is the application itself as seen by the operating
environment.
This model can be seen within a larger People-
Products Diagram8 that shows the social as well as the
technical structures. The arrows show what each part
does.

In the context of a Domain-Driven Design project, the
oval labeled “Domain-object Service Specification”
can be seen as a direct result of the team’s
development of its Ubiquitous Language. It is to be
expected (and this is the message of the double arrow
in the second figure on page 3) that this specification
will evolve as team learning occurs. The record of
versioning of the specification and its corresponding
interface layer will record the learning of the team.

8 E.g., http://melconway.com/Home/craft2018/008.html

© 2018 Melvin E. Conway - 8 - Date of pdf: 7/10/2018
Twitter: @conways_law

Past: I have been working with a simple restaurant-
menu application in my recent conference talks. At the
end of the May 2018 Craft Conference9, 10 talk I
demonstrated the insertion of a gateway component as
a replacement for a specifically designed component
for performing an SQL SELECT.
This demonstration is in two slides.
http://melconway.com/Home/craft2018/034.html
describes the behavior of the gateway component, here
called a “Generic Message” component. The next
slide,
http://melconway.com/Home/craft2018/035.html ,
shows the removal of the special-purpose SQL
component in the demo application and its replacement
by the gateway component without a change in the
function of the application.
Future: This is, of course, provisional at the time of
this writing. My intention for GOTO Berlin11 is to
rebuild from scratch the same application using only
basic infrastructure wiring components plus multiple
instances of one gateway component. This will show
how, in each position of the component in the wiring
diagram, the options presented by the component
depend on its input.
If I have the time to develop the necessary additional
projector components I intend not actually to build the
application from scratch but to morph the Three
Stooges12 demo into it seamlessly. If I’m successful at
this, it should be a convincing demonstration of the
fluidity suggested by the double arrow in the second
figure on page 3 above.

9 https://craft-conf.com/speaker/MelConway
10 Watching the talk is easier with this annotated slide show
http://melconway.com/Home/craft2018/ than the video provided by
the conference organizers.
11 https://gotober.com/2018/sessions/568
12 http://melconway.com/Home/craft2018/006.html

Demonstration

