
Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 1 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

Universal Access to Application-building Tools: 
How It Can Happen 

 
Overview 

This research seeks to  
reframe the way the brain-body relates to building software  
from: a symbolic activity  
to: a manual activity.  

Two kinds of lessons have come from this approach. The technology lesson 
occurred over years of experimentation, and the practice lesson has occurred 
recently.  
To make this paper more digestible I’m presenting the practice lessons first. The 
technology lessons will follow for those who want to understand in detail what 
they have seen. 
The practice lesson has two parts: 
1. It introduces a model for application sessions that is static and 

nonprocedural. 
2.  It discusses the implications of this model on the development process. 
The technology lesson also has two parts, which you will see heavily applied: 
1.  A set of User-Experience Design Principles called the Humane Dozen 
2.  A Pattern called DOer, SHOWer.  
(TK) 

 
 



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 2 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

  
Table of Contents 

 
The Implications of This Research on Practice  3 

Here is Where We Are Going  3 
Starting Point: The Functional-path Session Model  3 

The Research Mission  4 
Viewpoint  4 
An Extended Walk-through  5 

From wireframe to Functional Paths  5 
The Restaurant Use Case  5 
Connecting Paths to the Wireframe  6 

The Wiring Tool  11 
From a Drawing to an Executing Wiring Diagram  11 
First Walk-through: A Simple Wired Example  11 
Now We Wire the Actual Use Case  18 
The Restaurant Use Case Wiring Diagram  19 

Process: The Collaborative Application Model  20 
The Functional-path Model is a Basis for Programmer-Nonprogrammer Collaboration  20 
Rough to Finish: Iterative Development  21 
The Collaborative Application Model Supports a Quasi-decoupled, Iterative, Collaborative 

workflow between Programmers and Non-programmers  22 
The Theory Behind the Practice  23 

The Humane Dozen Design Principles  23 
Design Principles: 1-7: Hands on the Working Material  23 
Design Principles 8-12: Single-mode Workflow  23 

The DOer, SHOWer Pattern  25 
Why the Funny Spelling?  25 
The Pattern is Simple  25 

Pattern Examples 1-3  26 
Example:1: Model-View-Controller (MVC)  26 
Example 2: Application-Presentation Layered Model  27 
Example 3: The Application-Development Life Cycle  27 

Pattern Example 4: Self-revealing Parameters  29 
Definition  29 
Implementation 29 

Pattern Example 5: Self-revealing Services  31 
Definition  31 
A Shallow Interaction  32 
A Deep Interaction  35 

Pattern Example 6: Immediate-Turnaround WYSIWYG Development Tools (wTools)  40 
Definition  40 
Multiple Applications of the Pattern  41 
General Conjecture On wTool Design  44 
 

Appendix: Evaluation of the Wiring Tool’s Fidelity to the Humane Dozen  45  
  



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 3 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

The Implications of This Research on Practice 

Below is a model for the structure of an application 
session; this paper is about how this model can 
radically affect the development process.  

Starting Point: The Functional-path Session 
Model 

When IBM introduced the 3270 computer terminal in 
the 1970s, introduction of data fields instead of 
characters as the elements of communication between 
the computer and the terminal was viewed as an 
engineering optimization. What this conceptual shift 
does for us now is enable us to think of an application 
session in terms of static connections rather than 
procedural operations. 
Here is a statement of the model: 

This enables us to draw lines from display items back 
to business objects, with some possible functional 
transformations along the way. A tool concept comes 
directly from this. We’re going to make this concrete 
with the walkthroughs below, in which we start with a 
wireframe description of a use case and end up with a 
functioning wired application.1 
  

                                                
1 See http://melconway.com/talks/2019_consumer_apps/12.html  
and the following slide. I am considering creating a video that 
shows the entire process in one place.  



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 4 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

The Research Mission 
Viewpoint 

The primary focus of my research has been to 
maximize the number of people who have the ability to 
build useful information tools.  
Maximum access suggests finding a maximum set of 
skills common to all normal humans, and then 
designing to that skill set. This skill set is 
discoverable; just observe what Nature drives every 
human to practice relentlessly in the first few years of 
his or her life: hand-eye-brain coordination.  
My conclusion is that to maximize access we need to 
reframe the way the brain-body relates to building 
software  
    from: a symbolic activity  
    to: a manual activity.  
Consider this thought experiment. Imagine that you are 
a potter in the bowl-making business, but the 
individual potter’s wheel technology does not exist. 
Instead what you have to do to make a bowl is write a 
bowl-making script in a text editor, email it to a bowl-
making factory, and then wait for the bowl to be 
shipped back.  
That is pretty much how we built software when I got 
started in the 1950s. Things are a little better now, but 
we’re still a lot closer to the text-editor end of the 
hands-on spectrum than to the potter’s wheel end. My 
goal, simply stated, is to move along that spectrum 
toward the potter’s wheel.  

  



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 5 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

An Extended Walk-through 
We’re going to use the Functional-path model to go 
from a sketched wireframe to a running program in 
two steps: 

1. Use common sense to draw the functional paths 
from what we know about the wireframe. 

2. Make a direct conversion from the drawing to a 
wiring diagram that executes in the wiring tool. 

This walk-through illustrates a use case in which a 
waiter takes a customer order in a restaurant. The 
menu items are in a relational table called “Item”. 
Every item is in one of six categories, and there is a 
“Category” table for navigating to items.  
Here is a sketch of the user interface. The items are 
numbered for the purpose of the following usage 
scenario description. 

Select a category in (1). This displays all the items in 
the selected category in (2). Selecting an item shows a 
brief description in (3) and its unit price in (4). (5) is 
an entry field in which you enter the number of items 
being ordered. Clicking the Accept button (6) causes 
the “extended price” (total for the number of items) to 
be displayed in (7). If you want to add that number of 
items to the shopping cart, press the Order button (8) 
and it shows up in (9). At the same time the order total 
amount is recomputed and displayed in (10). Button 11 
(not used here) will delete a selected item from the 
shopping cart.  
 

From Wireframe to 
Functional Paths 

The Restaurant Use Case 



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 6 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

We will be using red lines to indicate the paths from 
data to display. For now, look only at connections; 
behavior will come later. Here is the path from the 
Category table to the Category list box: 

Now, if we were coding this with a relational database 
we would next perform an SQL SELECT on the Item 
table, selecting only the items in the chosen category. 
We’re going to do that, in the functional path 
language. First we need a “Selector” transform box 
that is tightly coupled to list box (1) and that is always 
sourcing the chosen category. (If your mind is inclined 
to electrical circuitry as mine is, think of it as a rotary 
switch.) This output will come out a “connector” 
shown as a circle (we’re beginning to sneak up on the 
wiring model). Here it is: 

  

Connecting Paths to the 
Wireframe 



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 7 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

Now we’ll make the path from the selected category to 
the SQL SELECT transform box, and from the 
resulting view to the Items list box (2): 

Another Selector transform box inserted in this view 
path sources the selected Item, and two column values 
of the selected Item: Description and Unit Price. (The 
transforms that select those two columns are discussed 
below as Self-revealing Parameters.) 

Now something new happens. It turns out there is a 
third table, called “Order Item”, whose records are 
created from “Item” records by adding two columns: 
Quantity and Extended Price (Unit Price times 
Quantity). Furthermore, it has behavior: when an 
assignment is made to Quantity, Extended Price is 
computed. These Order Item records are the things that 
will be going into the Shopping Cart collection.  



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 8 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

Every time a selection is made in the Item list box and 
the selected item is sourced from the Selector 
transform, a candidate Order Item record is made by a 
“Derive” transform box, and its Quantity and Extended 
Price fields go to user interface items 5 and 7: 

How does the assignment get made to Quantity? More 
precisely, how is the timing of the assignment from the 
entry field (5) back to the Order Item record 
determined? That’s the function of the Accept button 
(6), which is connected to entry field (5) and tells it to 
make the assignment to its data source: 

 
  



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 9 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

Now we need something (we’ll call it a transform but 
whether it’s “functional” purists might disagree) that 
holds the ephemeral collection that is the content of the 
shopping cart. The current Order Item record will be 
added to it when the Order button (8) is clicked.  
(There are details being ignored here about paths to 
buttons; what are they? It turns out that they are data 
paths just like all the others, and no special treatment 
of user events is necessary. A button is a user-interface 
projector of an object I call a “doIt”, and the normal 
update protocol used for keeping projections 
synchronized works for doIts also. To the extent that 
one wants to think about “flows” for data, there are no 
retrograde flows associated with user-interface events.)  

 
  



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 10 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

Finally, we need to compute the total of the Extended 
Price columns in the shopping cart; we do this with 
another transform box. How we specify this and other 
transforms such as the SQL SELECT will be covered 
under Accessible APIs. 

 
  



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 11 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

The Wiring Tool 
Going from a sketch to a functioning wiring diagram 
in the wiring tool is straightforward because the wiring 
model looks so familiar. But first we’ll exercise the 
wiring tool with a simple example. 
In this walk-through we build something simple that 
resembles the restaurant use case.  
Assume left-to-right flow of data/objects on the wires.2 
We’re going to build a window with a list box showing 
a collection, and a text line showing the item selected 
in the list box. The window of the application being 
built will be on the left below.) The wiring tool will be 
on the right.  
Some wired components, called projectors, have a 
special function: each renders its input object in its 
region of the application’s user interface. The 
appearance on the user interface created by the 
projector is called the projection of its input object. On 
the right below are three wired projector components 
that render a multiline window frame, a list box, and a 
text line. The resulting application is on the left.  

As soon as these projector components were dragged 
onto the wiring workspace from the component 
                                                
2 The execution model started out as a flow model but has 
evolved to a set of message-based publish-subscribe trees. I have 
no reason to believe that it would run more slowly than 
conventional designs.  

From a Drawing to an 
Executing Wiring Diagram 

First Walk-through: A 
Simple Wired Example 



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 12 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

palettes on the left they were running; when they were 
wired together they showed up in the application 
window. 
Now we’ll wire up a test collection of three text 
constants and feed it into the list box projector; the 
result shows up at the left. (The selection of “Curly” is 

the result of my having clicked in the list box.) 
  



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 13 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

Notice that we have no way of feeding the result of a 
selection in the list box into the text line projector; 
that’s the purpose of the Selector component, 
introduced below. Please note that the Selector is 
tightly coupled to the list box. There is nothing ad-hoc 
about this coupling; tight coupling between selectors 
and “choose one” components (of which the list box 
projector is but one example) is a natural consequence 
of the underlying messaging protocols. 

  



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 14 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

After we wire the selector output to the text line 
component we see the result.  

Now we’ll replace the test collection source by the 
“Item” table from a relational database containing the 
take-out menu of an Italian restaurant. We do this by 
deleting the four components and their wires, and then 
replacing them. (There is some work selecting the 
database and table with parameter dialogs; this is not 
shown.) 

 
  



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 15 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

You see that the list box doesn’t know which column 
of the table to display, so it shows the default: the 
Smalltalk class name of the table. This is our signal 
that we have to set a parameter of the list box 
component that specifies which column of each input 
item to display. So we select the component (selection 
is indicated by the red box); this reveals the list of 
commands the component makes available to the 
developer (the list box at the bottom of the window). 

Selecting the top command opens a dialog showing the 
default choice, which is not what we want: 

 



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 16 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

So we choose the other radio button: 

 
Here we see Humane Dozen #12, Alive With Your 
Data, in action. Not only do we see the list of column 
names but we are helped by being shown the value of 
the chosen column in the first record in the table. So 
we choose “Item”, close the dialog, and see the 
correctly specified list box. (I clicked on the third 
item.) 

  



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 17 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

Now we do the same thing for the text line. Select the 
component: 

Click on the top command, then the second radio 
button. We’ll choose the Description column: 

 
  



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 18 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

Close the dialog, and we get the desired result: 

 
(placeholder: see 
http://melconway.com/talks/2018_gotober/13.html 
through 
http://melconway.com/talks/2018_gotober/21.html .) 
Below you see the final result.  

Now We Wire the Actual Use 
Case 



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 19 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

 
The wiring tool as it exists has no WYSIWYG 
wireframe builder; instead each region of the screen is 
rendered with its own projector component. These feed 
into a projector for the multiline window frame. 
Here is the wiring diagram for the restaurant use case, 
slightly annotated from a screen shot of the wiring tool 
executing the application. You can see it in operation 
at  
http://melconway.com/talks/2019_consumer_apps/12.html  
and the slide following that one. All the projectors are 
grouped on the right, and the wiring derived from the 
extended walk-through are grouped on the left. 

Later on we will be paying special attention to the two 
yellow components labeled “Function”; they are 
“Gateway” components.3  
  

                                                
3 There is no current video showing the whole process of 
building this use case, but an earlier version is very close: 
http://melconway.com/talks/2018_gotober/13.html through 
http://melconway.com/talks/2018_gotober/21.html . 

The Restaurant Use Case 
Wiring Diagram 



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 20 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

Process: The Collaborative Application Model 
The fact that you can go from a wireframe to a 
functioning wiring diagram might be an interesting 
exercise, but in terms of simplifying the development 
process, isn’t it just squeezing the balloon at the small 
end, leaving most of the work for others to do?  
Aren’t those transform and other boxes to the left of 
the wireframe in the extended walk-through just “Then 
a Miracle Occurs” boxes? 

No,  those boxes are the doors between the world of 
the programmer and the world of the non-
programmer, and they lead us to an application 
model and development process that has an 
important role for both groups.  
The slots in those doors through which the two groups 
communicate without the non-programmers having to 
learn to code are Accessible APIs and Self-revealing 
Services, discussed below.  
  

The Functional-Path Model 
is a Basis for Programmer-
Nonprogrammer 
Collaboration 



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 21 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

When starting to build an application it can make sense 
to rough out the user interactions first, the way we did 
in the extended walk-through. Then we can add detail.  
There is an interesting parallel to the manual 
craftsmanship analogy here too; the wiring diagram is 
the framework of the application and the details are 
added to refine the accuracy of the displays. Hence the 
names used in this Collaborative Application Model: 

  

Rough to Finish: Iterative 
Development 



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 22 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

 
If the development environment conforms to Humane 
Dozen #7: Robust, then if a mistake is made with a 
choice of component or parameterization or wiring, the 
application might behave incorrectly but the tool will 
not break and the error will be reversible. This 
encourages a more experimental style of development, 
which is consistent with enlarging access to the 
general population.  
The following figure suggests the workflow I envision. 
Wirers and developers proceed independently most of 
the time; their dependencies are at the points of contact 
in Gateway components, and their work might be 
subject to correction as the result of information 
gained when such connections are made. Together 
they iterate towards a solution.  

 
 
  

The Collaborative 
Application Model Supports 
a Quasi-decoupled, Iterative, 
Collaborative Workflow 
Between Programmers and 
Non-programmers 



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 23 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

The Theory Behind the Practice 
The Humane Dozen Design Principles 

The following seven attributes of a tool-language 
synthesis are what I consider necessary to move 
toward the hands-on end of the spectrum. 

1. Immediate  Every modification made to the 
working material is immediately seen in its 
behavior. 

2. Continuous  Small changes lead to predictable 
outcomes.  

3. Interactive The result of each change suggests 
the next change, like a child playing with a 
construction toy.  

4. Transparent The tool seems invisible and the 
artisan’s hands seem to be directly on the 
working material.  

5. Inspectable The behavior of all parts of the 
application can be inspected at any time. 
(Analogy: watching the behavior of a circuit by 
putting an oscilloscope probe on a test point.) 

6. Modifiable The artisan can change his or her 
work in midstream. 

7. Robust Every atomic gesture of the artisan that 
changes the working material is reversible and 
will not break the system. Of all possible states 
of the working material, many can be ugly or 
incorrect, but none are broken.4  

A Mode is a set of cognitive constraints you have to 
submit to in order to do a particular task, for example, 
being in the mind-set of command-line syntax in order 
to compose a command, or programming-language 
syntax in order to write code.  
Switching between modes is taxing and error-prone. 
The more modes, the greater the cognitive load. The 
following five attributes minimize cognitive load, 
minimize switching cost, and enhance fluidity in the 
workflow.  

                                                
4 The informal definition of “not broken” is: a determined novice 
can proceed without calling for help.  

Design Principles 1-7: 
Hands On the Working 
Material 

Design Principles 8-12: 
Single-mode Workflow 



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 24 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

Notice Self-revealing in particular. This is the 
antithesis of coding. Instead of being required to 
generate a syntactically correct expression, you choose 
from presented alternatives, each of which can be 
explained if you need. When this attribute is put into 
practice consistently and without exception it 
transforms the construction process. The DOer, 
SHOWer pattern directly addresses this attribute in 
multiple contexts.  

8. Isomorphic The executable form of the 
application is isomorphic to the working 
material. (This seems to be necessary for 
WYSIWYG development.) 

9. Self-revealing Interfaces present (and, if 
necessary, explain) choices; they don’t require 
formal constructions.  

10. Symmetrical The tool and the application being 
built are side-by-side peers, running at the same 
time with consistent state. Your next user-
interface action can be on either.  

11. Always on There is no concept of starting or 
stopping applications or components during 
construction. When a component is introduced 
onto the workspace it is running.  

12. Alive with your data You can see the flow of 
data through the application moment by 
moment. 

 
  



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 25 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

The DOer, SHOWer Pattern 
So you won’t confuse the names with a misspelled 
architectural drawing like the one below, and they will 
therefore help you remember the intended 
pronunciation:  
DOer, SHOWer rhymes with MOO-er, BLOW-er. 

 
There are two things in the pattern: one thing does, one 
thing shows. The pattern is a generalization of the 
Model-View-Controller pattern. Here is a figure we 
will be using.5  

It has two parts. As you will see later they are not 
necessarily software objects.  

• The DOer is a thing that has a specific job that 
it Does.  

• The SHOWer is a user interface on the DOer. It 
permits the user (shown as a stick figure on the 
right) to see aspects of the DOer that the 
SHOWer’s designer wants the user to see, and 
for the user to change or edit (some of) those 

                                                
5 Stick figure courtesy of Wikipedia, created by Jleedev:  
https://en.wikipedia.org/wiki/Stick_figure  

Why the Funny Spelling? 

The Pattern is Simple 



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 26 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

aspects. 
The SHOWer might be part-time. For example, 
it might exist as a factory that creates a dialog 
box object when the user requests.  

The user is not part of the pattern.  
Pattern Examples 1-3 

The variety of the six examples suggests the wide 
applicability of the pattern.  
Model-View-Controller is the underlying model for 
the GUIs (graphical user interfaces) of almost all well-
architected contemporary software. It was formalized 
in the 1970s in the Smalltalk project at Xerox PARC.6  

(In many descriptions, the terms View and Controller 
are not parallel; “View” means a display in a particular 
format (there might be several), and “Controller” is the 
part of the software that handles events from the user. 
Hence the asymmetry in the figure.) 
  

                                                
6 https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller  

Example 1:  
Model-View-Controller 
(MVC) 



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 27 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

 
The common GUI operating systems such as 
Smalltalk7, Microsoft® Windows®8 and Macintosh® 
OS X®9 employ variants of MVC. As a class of models 
we can refer to them as Application-Presentation 
Layered Models: 

 
In this example we’ll see that the pattern is 
hierarchical.  
The thinking behind Conway’s Law10 can be simply 
stated in the slogan “Think life cycle, not artifact”. The 
slogan is a device to help one back away from the 
center of attention in order to find a larger, containing 
system.  
In its simples form, the life cycle of an interactive 
business application has two phases. 

• The Operation Phase. The object code of the 
application is executing.  

• The Construction Phase. This is the 
design/development phase of building the 
software. In this conventional example, the 
artifact (the thing being built) comprises 
developer-readable source code, from which a 
software toolset creates computer-executable 
object code.  

  

                                                
7 https://en.wikipedia.org/wiki/Smalltalk  
8 https://en.wikipedia.org/wiki/Microsoft_Windows  
9 https://en.wikipedia.org/wiki/MacOS  
10 https://en.wikipedia.org/wiki/Conway%27s_law  

Example 2: Application-
Presentation Layered Model 

Example 3: 
The Application-
Development Life Cycle 
(Conventional) 



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 28 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

Mapping this onto our pattern we get: 
• The DOer is the Operation Phase of the 

application’s life cycle. The code is executing 
in an operational environment.  

• The SHOWer is the Construction Phase of 
the application’s life cycle. The code is being 
examined and modified in a development 
environment. 

Looking inside the operation phase of the application’s 
life cycle, we can account for the application’s GUI 
with one or more instances of the Application-
Presentation Layered pattern (see the left below). In 
the construction phase (see the right below) we will 
see the developer viewing and editing the source code 
using an Integrated Development Environment as the 
SHOWer: 

 
  



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 29 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

 
Pattern Example 4:  Self-revealing Parameters 
• A Self-Revealing Parameter is a parameter 

equipped with sufficient viewer(s)/editor(s) for 
examining and/or specifying it. The normal way 
the parameter is specified or examined is 
through these viewer(s)/editor(s), which 
conform to Humane Dozen #9, Self-revealing. 

Here is the design behind the “Find the data to 
display” dialog in the above wiring-tool walk-
through.11 It is an application of the DOer, SHOWer 
pattern.  
Any component that needs to project a string value that 
is a named element of an input collection, for example 
the two projectors in the walk-through, will need to 
have as one of its parameters something whose value is 
an instance of the Smalltalk class 
DisplayMethodParameter.  
Every DisplayMethodParameter value has the ability 
to raise the “Find the data to display” dialog on the 
host component’s input value. 

Here is an assumed underlying convention: 
Every object will respond to the message 
hasNamedField with a Boolean. Each object 
answering true must be able to supply a list of 
its named fields and will respond to 
namedFieldAt:<string> with the instance 
variable that has that name.  

Every parameter of every wired component has a 
“value” instance variable. In the case of 
DisplayMethodParameter the parameter value is an 
instance of the class DemoListSelectorObject, 
which is a subclass of the abstract class 
DemoUserSettableObject.  
DemoListSelectorObject is the DOer part of the 
pattern. Its twin, DemoListSelectorDialog, is the 
SHOWer part of the pattern; it raises the “Find the 
Data to Display” dialog.  
  
                                                
11 The wiring tool in its present form is a 16-bit Windows 
application. Other implementations of this example might work 
differently.  

Definition 

Implementation 



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 30 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

This is made explicit in the figure below. The abstract 
class DemoUserSettableObject has a twin abstract 
class DemoViewDialog, and each subclass of 
DemoUserSettableObject has a twin subclass of 
DemoViewDialog. 
Each pair of twin descendants of 
DemoUserSettableObject and DemoViewDialog is a 
realization of the DOer, SHOWer pattern.  

All parameters whose values are specified through a 
dialog use this pattern. 
When its respective parameter needs to be edited (that 
is, when the developer clicks the component’s 
command corresponding to that parameter), each 
descendant of DemoUserSettableObject creates an 
instance of its twin, which will raise a Windows dialog 
through which the user can edit its instance variables.  
Following is a table of some self-revealing parameters 
in the wiring tool that conform to this pattern.  



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 31 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

 
Pattern Example 5: Self-revealing Services 
• An Accessible API is a collection of one or 

more Self-revealing Services.  
• A Self-revealing Service looks like the service 

analog of a self-revealing parameter. It is a 
service equipped with sufficient 
viewer(s)/editor(s) for examining and 
specifying a request to it. The normal way a 
request is specified is through the 
viewer(s)/editor(s), which conform to Humane 
Dozen #9, Self-revealing.  

But Self-revealing Services are very different in this 
respect: systems are built by combining externally-
built services. Therefore it should be possible to take a 
conventional service built elsewhere and have a way to 
turn it into a Self-revealing Service. We do this by 
treating the externally-built service as the DOer of our 
pattern, and adding a SHOWer to it that appears to the 
external user as a Self-revealing Service. The SHOWer 
acts as a wrapper that presents a standardized interface 
to the naïve user that conforms to the Humane Dozen:  

For each service the wrapper should present a single, 
standard service. It answers the simple question: 
“Show me what you can do”. The form of the answer 
is a list of zero or more Self-revealing Services. This 
list is presented in the standard dialog raised by the 
Gateway component. 
I’ll show two examples from the restaurant use case.  

1. Computing the shopping-cart total. This is a 
“shallow” interaction: the wirer chooses from 
the two available kinds of total with one click in 
the standard dialog raised by the Gateway 
component. 

Definition 



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 32 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

2. Specifying the SQL “SELECT” verb. This is a 
“deep” interaction: the “Specify Message” 
button in the standard dialog tells the Gateway 
component to turn control over to the wrapper, 
which raises its own dialog(s) to further specify 
the service.  

 
We’ll be looking at the Gateway component that 
computes the total of the shopping cart: 

Here we start with the shopping cart in the final state 
of the video at 
http://melconway.com/talks/2019_consumer_apps/12.html . 
In the following we have selected this Gateway 
component. Its input is the collection of three Order 
item records in the shopping cart. The service that has 
been selected is “Sum Extended Price Fields” and the 
result shows up at the bottom of the application 
window. 

We’re going to see what other service is available so 
we click on the “What message(s)…” command at the 

A Shallow Interaction 



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 33 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

bottom, and the Gateway component’s standard dialog 
opens up, showing two services: “Sum Extended Price 
Fields” and “Sum Quantity Fields”. 
Notice that a brief description is shown below the 
selected service. 

We select “Sum Quantity Fields”. After we click OK 
the dialog closes and we immediately see the new 
value. 

  



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 34 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

 
Now we reverse the process: 

 
 
 
 



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 35 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

 
In this case we’ll be looking at the Gateway 
component that specifies an SQL SELECT applied to 
the Item table input, using as a parameter the Name 

field of the selected category, in this case, “Salads”: 
Here we have selected the Gateway component and we 
see the “What Message(s)…” command at the bottom: 
  

A Deep Interaction 



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 36 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

We select it, and the Gateway component raises its 
standard dialog. There we see only one choice, “Select 
Rows and/or Columns”.  

We choose it and follow the instruction to click the 
“Specify Message” button. This gives control to the 
wrapper, which continues the process. It opens a 
dialog that projects a “Slice” object (part of the Table 
input object), which manages an SQL SELECT verb: 

  



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 37 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

This is yet another application of the DOer, SHOWer 
pattern: 

Now, in order to reassure ourselves that we really are 
in touch with what is going on, we decide to break the 
connection to the selected category input and force 
“Pasta” as the category in the SELECT. We do this by 
clicking the “Use this expression” radio button and 
typing “Pasta” into the text box. We can examine the 
resulting SQL by clicking the “Show Result” button: 

  



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 38 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

We click two OK buttons and see that, indeed, the 
“Items” list box shows Pasta items in spite of “Salads” 
being selected in the “Categories” list box.12 

Now we re-select the “Use Sink Input” radio button, 
and click “Show Result” again: 

  

                                                
12 The “4” in the Quantity box is a bug. 



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 39 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

Finally we click two OK buttons and we see that the 
Salad Items show up in the Items list box: 

  



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 40 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

Pattern Example 6: Immediate-Turnaround 
WYSIWYG Development Tools (wTools) 

In Immediate-Turnaround Development every change 
to the source program is immediately reflected in the 
behavior of the object program. At the very least we 
need a very fast compiler or an alternative to the edit-
compile-link-run-debug cycle.  
In WYSIWYG development we further reduce the 
cognitive load on the developer with this requirement:  

Eliminate the distinction in the artisan’s mind 
between an executable object language and a 
readable source language. Therefore no 
debugger will be necessary to translate between 
the two, and no distractions will arise from the 
need to manage the correspondences between 
expressions in two languages.  

Here we apply just about everything we have seen 
above in order to address the question:  

How do you build an Immediate-Turnaround 
WYSIWYG Development tool? 

For the sake of brevity, we’ll call it a wTool. We need 
a name for the Application Under Construction, which 
we’ll call the App.  
  

Definition 



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 41 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

Let’s return to Pattern Example 3, which describes the 
conventional application-development life cycle: 
 

How does a wTool differ?  
1. The Operation and Construction phase of the 

life cycle (namely, the DOer and SHOWer parts 
of the wTool) are running concurrently.  

2. As you have seen many times above, their 
SHOWers are projecting their results side-by-
side. 

3. The User and Developer are the same person; 
we’ll call her the Artisan. 

  

Multiple Applications of the 
Pattern 



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 42 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

How to represent this? This is an interesting 
demonstration of the expressive power of the pattern. 
It also relies heavily on Humane Dozen #8, 
Isomorphic. 

 
  



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 43 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

You can see these elements in the walk-throughs. 
• The objects of the executing application (that is, 

the App DOer) that are reflected in the wTool’s 
UI (that is, the wTool SHOWer) that have 
behaviors in response to Artisan events in the 
wTool’s UI are Components and Wires. These 
are the elements of the projection of the App in 
the wTool’s UI for which atomic editing 
gestures exist.  

o A new component instance can be 
dragged out from a component palette. 

o A showing components can be deleted, 
after all its connecting wires are 
removed. 

o A showing wire can be deleted. 
o A new wire instance can be created 

(subject to compatibility constraints 
embodied in the components) by 
dragging between a source and a sink 
connector of two different showing 
components.  

• Completion of any of these gestures triggers a 
change in the App DOer, which can generate a 
shower (the other kind) of internal events. 
Those four events and their responses define the 
semantics of the wTool/Artisan interaction.  

• Note that, at the risk of oversimplification, 
deployment means detaching the Tool 
SHOWer, and maintenance means re-attaching 
it.13 

• The semantics of Artisan events in the App 
SHOWer are defined by the respective projector 
components. 

  

                                                
13 It’s not so simple with Smalltalk, where hidden dependencies 
across the detachment surface need to be attended to. 



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 44 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

I conjecture that wTools in general can be built 
according to a general form of this design; we remove 
mention of components and wires and refer generally 
to objects in the executing App that have editable 
projections in the wTool’s SHOWer: 

  

General Conjecture On 
wTool Design 



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 45 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

Appendix: 
Evaluation of the Wiring Tool’s Fidelity to the Humane Dozen 

Here is the Humane Dozen with comments about the 
applicability of the wiring language and tool. 

Keep in mind that the Humane Dozen applies to 
interactive event-driven applications, which, 
except for a very brief time after a user event, 
are doing nothing, waiting for the next user 
event.  

The workspace is a graphical canvas that allows drag-
and-drop drawing and editing of wiring diagrams. 

1. Immediate “Every modification made to the 
working material is immediately seen in its 
behavior.” True. 

2. Continuous “Small changes lead to predictable 
outcomes.” This is an imprecise notion but is 
true in spirit.  

3. Interactive “The result of each change suggests 
the next change, like a child playing with a 
construction toy.” This has been my experience. 
I believe that this property has implications for 
development style; see the discussion of 
workflow on page 6 of [14]. 

4. Transparent “The tool seems invisible and the 
artisan’s hands seem to be directly on the 
working material.” False, but it must be 
maintained as a goal for WYSIWYG tools such 
as page-layout applications.  

5. Inspectable “The behavior of all parts of the 
application can be inspected at any time.” True, 
in part. There are big opportunities here.  

6. Modifiable “The artisan can change his or her 
work in midstream.” Not strictly true when 
working with components that have previously 
been packaged from wiring diagrams. Only the 
top-level workspace is currently modifiable.  

7. Robust “Every atomic gesture of the artisan 
that changes the working material is reversible 
and will not break the system.” True and 

                                                
14 http://melconway.com/Working/WP_19.pdf  
 



Working Paper No. 20 
As of 7/31/2019 

 

© 2018-2019 Melvin E. Conway - 46 - Date of pdf: 7/31/2019 
Twitter: @conways_law   

 

significant. The four atomic gestures are: insert 
and remove a wire, and insert and remove a 
component.   

8. Isomorphic “The executable form of the 
application is isomorphic to the working 
material.” True. I had to invent a wiring-
diagram-shaped execution model.  

9. Self-revealing “Interfaces present (and, if 
necessary, explain) choices; they don’t require 
formal constructions.” How true this is will 
depend on the faithfulness of implementations.  

10. Symmetrical “The tool and the application 
being built are side-by-side peers, running at the 
same time with consistent state. Your next user-
interface action can be on either.” True and 
significant.   

11. Always on “There is no concept of starting or 
stopping applications or components during 
construction. When a component is introduced 
onto the workspace it is running.” True and 
significant. This was not true initially; it took 
years to learn this lesson. 

12. Alive with your data “You can see the flow of 
data through the application moment by 
moment.” True and significant. It implies a 
different style of development, in which you 
have data present from the start, even if it is 
fake.  

 


