
© Copyright 2007-2010 Mel Conway - 1 - conway.mel@gmail.com

The Case for a FOO-technology Web-based
Application Development Service

Mel Conway

If there is a technology that can radically increase productivity
building applications to run in Web pages, smart phones, and other
GUI devices, including those in the new iPad category and ordinary
client-server computer applications, then there will appear a large
number of new developers to generate these applications.

Here is a development technology that promises to create this new
market of application builders including programmers as well as a
large new number of wannabe programmers and non-programmers.
This market can be an order of magnitude larger than existing
developer markets based on conventional programming tools.

The technology exists, is well documented, and can be
demonstrated in the form of a substantial proof-of-concept
prototype.

Abstract: FOO (Flow Objects Online) is a graphical application development technology
that can radically improve the rate of developing server-based end-user applications,
compared to conventional text-based programming. Its use is not inherently restricted,
but it stands alone in the field of technologies for rapid development of end-user
applications that run on remote servers.

An appendix makes the case that the application of the FOO technology in support of
low- and moderate-skill developers and wannabe developers can radically enlarge the
market for a Web-deployed application development service, compared to the market for
a similar service based on conventional text-based programming tools.

The argument has three parts.

1. A premise: A web-based application development service such as that described
on page 2 of this paper.

2. A premise: The FOO graphical development technology can indeed multiply the
productivity of ordinary developers of end-user applications by an order of
magnitude. Page 3 of this paper briefly describes the technology.

3. A statement that, under reasonable assumptions, the increase in the size of the
market of the development service varies as the square of the productivity factor
(the factor that FOO multiplies development productivity over conventional
programming). The remainder of the paper shows the justification of this
statement.

© Copyright 2007-2010 Mel Conway - 2 - conway.mel@gmail.com

Rationale for the service description below: It will be shown on the following pages that the potential size of the
market for a software development technology is strongly influenced by the general level of productivity (amount of
useful function created per unit time) afforded by the technology. Given the usual power-law distribution for
productivity in a population of developers, adopting a technology that increases the general productivity level by a
factor enlarges the number of economically productive developers by the square of that factor.

The amount that a development technology facilitates each developer’s reuse of other developers’ code to a depth of
several levels is the single most powerful influencer of productivity, other things being equal. Several object-
oriented textual programming languages facilitate such reuse well. They form a mature technology whose inherent
productivity characteristics are understood.

Graphical languages can be simpler to use than textual languages, so they potentially open up the development tool
market to a larger group, including some who today cannot program. But graphical languages have suffered from
three major shortcomings: (1)They do not generally obviate the need for textual coding or scripting; (2)A given
graphical language is typically not applicable to a broad range of application types; (3)Most critically, they have not
been shown to support multi-level reuse.

The graphical technology described here can create the entire class of interactive GUI applications, and it is unique
in its support of multi-level reuse. Because it combines the cognitive accessibility of a visual programming model
with multi-level reuse it promises to create a large new population of economically productive developers.

Build Applications Over the Web Without Coding

Both programmers and non-programmers build business applications
using a visual “component-wiring” or “flow” language. Simple
applications are graphical and easy to build. Complex applications are
complex, but still graphical and still possible to build. All aspects of an
application, from the database to the user interface in the browser, are
built by wiring up components.

There is a stable set of “primitive” components built by expert
programmers from which all other components are built by encapsulation
of wiring diagrams. Given a mature set of primitive components,
variations needed for specific applications are obtained by option
selection in dialogs, not by code.

The flow model is more understandable than programming, yet
generality, scalability, and application performance are not sacrificed.

Users assemble “open source” wired components from a public
component library. Users create reusable wiring diagrams from library
components, encapsulate them, and put new components into the library
for others to use. Network effects raise the general productivity level.

A substantial increase in productivity implies an order-of-magnitude
increase in the developer population.

Developers create and edit wiring diagrams within Web browsers. The
applications execute from the servers of the development service.

Development Is
Entirely Graphical

There Is No User
Coding

Simplicity Raises
Productivity

Collaboration Raises
Productivity

More Productivity
Means More
Developers

Development and
Deployment Are
Worldwide

© Copyright 2007-2010 Mel Conway - 3 - conway.mel@gmail.com

Brief Description of the FOO Technology

What kind of a development technology can increase the productivity by
an order of magnitude over conventional programming of a whole
community of end-user application builders?

The FOO technology has the following properties.

• The development language is not a conventional textual
language but employs an intuitive graphical process of assembly
of visual components by “wiring” them together. Data flows
over the wires from database to user interface. Concrete flow
processes can be understood by more people than textual
processes.

• The user wires together components from the library and can
create components for reuse by others. There is a way to
generalize a wiring diagram, encapsulate it, and add the
encapsulation back to the library. As part of the Web-based
development service, this reuse process takes advantage of
network effects to raise the general productivity level.

• Components created by encapsulation are indistinguishable from
components created by conventional programming, insofar as
they are employed in the assembly process. This is a property of
all successfully extensible programming languages.

• An application is simply a special case of a component created
and added to the library, one that runs by itself.

My experience as a user of FOO suggests that an order-of-magnitude
increase in rate of development, compared to textual programming, is
within reach.

The combination of the following two properties is what affords a radical
increase in development productivity:

• Multiple levels of reuse.

• An intuitive, concrete graphical assembly process.

In order for these two properties to coexist comfortably, a dataflow
application model is necessary. FOO employs such a dataflow model. It
has specific technical characteristics that are successfully hidden from
the general population of application developers; this successful hiding is
what makes the component wiring process look simple. Of course, the
details of the technology have to be somewhere, and in FOO they are in
the assembly tool and the primitive components, i.e., the bottom-level
components that are built by conventional programming and from which
all other components are built. The primitive components and the
assembly tool must be built by programmers who are more expert than
those application developers (and wannabe application developers) in the
general population addressed by the Web-based application development
service.

The FOO Technology

The Dataflow
Application Model

© Copyright 2007-2010 Mel Conway - 4 - conway.mel@gmail.com

Appendix

Defense of the Statement that the Size of the Market for
the Web-based Development Service Varies as

More Than the Square of the Productivity Increase
Defining productivity as amount of useful function created per unit of
time, let us pursue the implications of the general observation that
programming productivities vary widely. There is a small number of
superstars, a large number of programmers with average productivity,
and an even larger number of programmers (and wannabe-programmers)
with below-average productivity. In the following discussion we
consider the entire pool of developers and potential developers.

We assume, with some justification from experience, that the
productivities of the individuals in this pool are distributed according to a
Power Law distribution. [See, for example, Shirky:
http://www.shirky.com/writings/powerlaw_weblog.html .]

The power law curve is, in its simplest form, the y = 1/x curve. We need
a specific function that describes the productivity distribution of our pool
of developers and wannabe developers. We start by defining that an
individual has “acceptable productivity” if that individual can develop an
arbitrarily defined standard application in a period of time that is less
than or equal to an arbitrarily-determined fixed amount of time. (For
example, we could define acceptable productivity as being able to build a
standard application in six months or less.)

Our power-law assumption reads like this. Consider the entire pool of
developers and wannabe developers, those with both acceptable and less-
than-acceptable productivities. Choose a random group of N individuals
from the population, where (1)all N individuals have acceptable
productivity, (2)the least productive of these has exactly the minimum
acceptable level of productivity, and (3)N is small compared to the total
size of the pool. Ranking these N in order of decreasing productivity with
the most productive at position number 1 and the least productive at
position N, we assume that each of the top 1/5 of these N developers has
a productivity at least twice the minimum acceptable productivity. An
informal way of saying this is: if the productivity of the developer with
rank n is P, then the productivity of the developer with rank n/5 is 2P.1
That assumption gives us the function we are looking for, as follows.

1 The work performed by the first m individuals in a given amount of time is
proportional to the area under the power curve from 1 to m. Under the
assumption being made here the first 20% of a given developer population does
28% of the work of the total population. This is a much weaker assumption than
the 80/20 rule.

The Power-Law
Productivity Model

© Copyright 2007-2010 Mel Conway - 5 - conway.mel@gmail.com

Order N developers inversely by productivity, with the most productive
first. Assume all N can build at least a standard applications in the fixed
time period, and the Nth developer can build exactly a standard
applications is that time period. We assume a general power-law
productivity relationship in which the developer in position N can build a
applications and the developer in position N/5 can build 2a applications.
If the developer in position n can build A(n) applications, then there are
constants k and K such that

�

A(n) = K ⋅ n−k

and we solve for k by substituting

�

a = K ⋅N −k

�

2a = K ⋅
N
5

⎛
⎝

⎞
⎠

−k

,

which gives

�

A(n) = K ⋅ n−0.431 .

We define Relative Productivity P(n) of developer n by scaling the curve
so that the productivity of the most productive developer in the
population is 1.0

�

P(n) = n−0.431

This figure shows the shape of the function.

© Copyright 2007-2010 Mel Conway - 6 - conway.mel@gmail.com

Consider the group of the top p individuals in the population, and the
larger group of the top q individuals in the same population, where
p < q ≤ N. The p group is a subset of the q group, and they both contain
the most productive individuals numbered 1 to p in the total
subpopulation.

The ratio of the productivity of individual q to that of individual p is less
than 1 and is given by the ratio

For the sake of illustration let’s assume that individual p is 10 times more
productive than individual q. Therefore

�

q
p

⎛
⎝ ⎜

⎞
⎠ ⎟
−0.431

=
1
10

which gives

�

0.431⋅ log q
p

⎛
⎝ ⎜

⎞
⎠ ⎟ = log 10

and

�

q
p

= 102.32 ≈ 209 .

�

q−0.431

p−0.431 =
q
p

⎛
⎝ ⎜

⎞
⎠ ⎟
−0.431

© Copyright 2007-2010 Mel Conway - 7 - conway.mel@gmail.com

This interesting result says that when the productivity of individual p is
10 times the productivity of individual q, the size of the q group is over
200 times the size of the p group.

We can generalize this result to a productivity ratio of R instead of 10. If

�

productivity of individual p
productivity of individual q

⎛
⎝ ⎜

⎞
⎠ ⎟ = R

then

�

q
p

= R2.32 .

That is, the size of the q group is more than times the size of the p
group.

Using this result, assume that at time 1 the state of the development art is
that the productivity of developer p is the minimum useful productivity.
(Therefore, individual q has less-than-acceptable productivity.) Then, at
time 2 the technology has changed and everybody’s productivity is raised
by a factor R. At time 2, then, developer q is the developer with the
minimum useful productivity. From time 1 to time 2 the size of the
population of developers with useful productivity is then raised by a
factor of q/p, or more than R2.

This effect might not be noticed for small productivity increases, but a
radical productivity increase can reshape the developer population.

Based on years of experience as a user of a prototype FOO-based
development tool, and assuming a tool mature enough to build a broad
collection of applications, I believe that a productivity multiplier of 3
over conventional programming is a conservative estimate. Therefore,

The market for a FOO-based application development
service can be an order of magnitude larger than the market
for a similar service based on conventional programming.

Size of the Population
of Useful Developers
is Very Sensitive to
Productivity

© Copyright 2007-2010 Mel Conway - 8 - conway.mel@gmail.com

The figure below demonstrates graphically why the shape of the power
curve causes this important effect. It shows the qualitative difference in
the number of acceptably productive developers based on the earlier
assumption of a productivity multiplier of 10. Let the bottom curve
represent the productivity distribution using an old technology, and let
the top curve represent the productivity distribution using a new
technology that multiplies everybody’s productivity by 10. The curve
shows individuals 1 to 500, ranked in order of decreasing productivity.
(A relative productivity level of 1 is defined to be the productivity of the
most productive programmer using the old technology.) Now assume
that 0.74 is the minimum acceptable productivity level. With the old
technology there are only two individuals with acceptable productivity.
With the new technology there are 418 individuals with acceptable
productivity.

