

© 2008-2009 Mel Conway - 1 - Revision date: 2/20/2009
conway.mel@gmail.com

Build Software Like Houses
Mel Conway

Executive Summary

The Subject. This paper is about the evolution of a vital contemporary
technology: the technology of digital systems that interact with their
users through graphical user interfaces (GUI) that both display output
to the user and that accept user input. These are called “GUI tools” in
the paper. This technology is everywhere–the GUI tools category
comprises, for example, smart phones, personal computers, and many
public kiosks–and many people depend on these tools for their
livelihood, well being, and recreation.

The Problem. The problem that this paper addresses is that the great
majority of people who interact with GUI tools do not have the
slightest idea about what goes on inside them, and when something
goes wrong, as it often can, somebody has to be called to help. Thus,
to keep things running we must impose a class of elite intermediaries
between many working people and the tools on which they depend.
This situation is often unsettling, humiliating, frustrating, and
disempowering–in sum, not good. It is also costly.

The Goal. This alienation between users and a vital technology on
which they depend must be eliminated.

The Approach. In the paper I take a historical look at three vital
technologies that have been with us for a long time—arithmetic in
commerce, written communication between people, and the calendar
in agriculture—and I notice that these technologies started out
similarly to the way we are now with GUI tools, essentially requiring
a class of elites or priests to administer, but over time these
technologies successfully evolved from being obscure to being
commonplace, to the extent that today all three technologies are
taught to primary school children.

GUI tools are going to be with us for a long time, and it is important
that they also go through the same evolution from obscure to
commonplace that arithmetic, writing, and the calendar did, so that
all users of GUI tools can use them with confidence. The question
that I ask and then answer is: what will it take for this evolution
from obscure to commonplace to happen? The answer I offer comes
from observing how the three historical technologies—especially
arithmetic—have been simplified for teaching to school children: take
advantage of the hard-won hand-eye skills that each of us has spent

© 2008-2009 Mel Conway - 2 - Revision date: 2/20/2009
conway.mel@gmail.com

years practicing as children. In other words, make it concrete and put
it through the hands. I have done this for GUI tools.

The Solution. I have created a new, more humane, concrete conceptual
model and a visual assembly method for GUI tools that will help any
learner relate to the technology more like carpentry or plumbing than
software. Furthermore, the concrete conceptual model and visual
assembly method are applicable to the entire class of GUI tools.
Today’s GUI tools are not built according to this conceptual model, but
they could be, and many would have more transparent
implementations if they were.

The Question. We are now in a position to take a large step in the
evolution of the technology of GUI tools from obscure to commonplace,
just as arithmetic, writing, and the calendar have so evolved, with
large social benefits. The reason is the appearance of a more humane
conceptual model for GUI-tool internals. This new conceptual model
is by its nature a disruptive technology. Where is the application
niche in which this disruptive technology can become established? I
present a few candidates, the most evident being in primary- and
middle-school education. Not satisfied with existing answers to this
question, I am eager to sit down with people interested in this issue
to plan the best strategy for moving forward.

Contents of the Paper

Prelude to the Thesis 3
Digital Technology Connects to Our Hand-eye Skills 3
Technological Advance Alienates Its Users 3
Long-term Technologies Move Toward Widespread Understanding 4

The Thesis 6
Widespread Understanding Requires Hand-eye Construction 6
A Concrete Metaphor for All GUI Tools Exists 6
A Hand-eye Construction Tool That Builds GUI Tools Exists 8

The Way Forward 9
Software Development 9
Education 9

Appendix 1: The Four Elements of the Hand-eye Construction Process 11
Appendix 2: A Widely Usable Web Application Development Service 12

© 2008-2009 Mel Conway - 3 - Revision date: 2/20/2009
conway.mel@gmail.com

Prelude to the Thesis
For thousands of generations men and women, and their genetic
predecessors, have been securing and preparing their food, building their
shelters, and otherwise modifying the world to support their existence,
using their bare hands, sometimes augmented by simple hand tools.

To witness the development of a human child in the first few years of life
is to realize the immense importance of the skills that intricately
coordinate the hands and eyes. We are born without these skills but with
a tremendous potential to acquire them, which we then obtain after birth
through literally years of practice. Our species has evolved with a vital
hand-eye subsystem in place to support both the learning of the hand-
eye skills and their employment.

The development of our species began to accelerate when we started
employing agencies outside our bodies to amplify our muscles, first
domesticated animals, and later machines. We have acquired many such
technologies over our history.

We don’t use our technologies directly; we use tools. A tool is an
invention that harnesses one or more technologies to amplify one or
more human skills.

Now, in the last half century many existing technologies have fused and
morphed into something that is so potent and strange we are tempted to
call it a new technology. I call it digital technology. In some ways it is a
higher order technology because of the way it interconnects, controls,
and unifies many of our existing technologies.

The dominant tool of digital technology is the “GUI∗ tool”. A GUI tool
is a digital tool with a bidirectional interface to the tool user’s hand-
eye subsystem. Examples: a word processor on a computer, a “smart”
mobile telephone, a video game, an airline check-in kiosk.

This paper is about making the technology of GUI tools
understandable to a large portion of our population.

It seems that every advance of a technology further removes the typical
user of its tools from understanding how the tools work and from
recovering from their failures. My favorite example is sound recording.
Edison's development of the wax cylinder evolved into a mass consumer
product, the 78 RPM record. Before the mechanical gramophone became
electrified, its function and its connection to the ear was intuitively
understandable by its users and, if part of it broke, its function could be
largely recovered by the application of human ingenuity. If the needle
broke, use a toothpick. If the spring broke, push the turntable around by
hand. Even after the “morning glory” acoustic horn was replaced by an

∗ “GUI” (pronounced the same as gooey) is an acronym for Graphical User Interface.
The term refers to the display screen of the prototypical GUI tool: the personal computer
after the mid-1980s.

Digital Technology
Connects to Our
Hand-eye Skills

The hand-eye learning style is
built into us

Our technologies have been
evolving with us since prehistory

Something new is on the scene:
digital technology

Technological
Advance Alienates Its
Users

© 2008-2009 Mel Conway - 4 - Revision date: 2/20/2009
conway.mel@gmail.com

electronic amplifier and loudspeaker, you could recover from failure by
reverting to the mechanical model.

The replacement of the 78 RPM record by the 33 1/3 RPM LP began the
descent into alienation. The grooves were so fine the toothpick trick no
longer worked. Shortly after the LP record came magnetic tape; now the
method of recording the music was invisible. But at least the sound
waves were there–somewhere. The CD changed that; the sound waves
became long strings of numbers, and even seeing the spots that carried
these numbers required a powerful magnifier. Well, at least the numbers
still stood for the sound waves, even though we couldn't find them. Then
came mp3 compression and even that connection to our ear-brain went
away. The iPod® is worlds away from the gramophone in elegance and
power, but which will you choose when your life depends on keeping it
running?

The story of movies is similar. Our technology has evolved from flip
books to streams of bits that we can't even store and call our own.

What’s wrong with the fact that technological advance separates people
from the technologies they need? It’s the disempowerment–our
dependency on elite intermediaries between us and our technologies.

Arthur C. Clarke famously stated: “Any sufficiently advanced
technology is indistinguishable from magic.” Magic is beyond our
understanding and therefore beyond rational control. For many of us, our
livelihoods and security depend on magic of this sort. Because our
control over this magic is at best tenuous, our dependency on advanced
technology–and on the elites who manage it for us–is accompanied by a
pervasive uneasiness.

But the news here is encouraging, if your time perspective is long
enough. There is nothing new about the tension between technological
advance and alienation of the masses. Indeed, one way we can think of
human progress is in terms of the migration of the mastery of
technologies from elites to commoners.

Long-term
Technologies Move
Toward Widespread
Understanding

© 2008-2009 Mel Conway - 5 - Revision date: 2/20/2009
conway.mel@gmail.com

If a technology is important enough to last for a very long time, the
fraction of the population that understands it may start with a small cadre
of elites but it will increase until it becomes almost the entire population.
As this happens, teaching about the technology will migrate from
professional school to primary school. Consider:

• Arithmetic in commerce

• Written communication between people

• Use of the calendar in agriculture

The invention of easy-to-use tools contributes to the migration of
technologies toward universal understanding. A tool that helps to make a
technology universally understandable will necessarily be well matched
to our hand-eye skills. Examples:

• Arithmetic became more accessible when we mapped numbers
onto our hands. Then almost every person came equipped with
counting tools. After that there was room for invention of the
abacus as an amplifier of these counting tools.

• Writing became more widely accessible when the pen replaced
the hammer and chisel. (In 1962 Douglas Engelbart, inventor of
the computer mouse, observed that if you couldn’t build a pencil
smaller and lighter than a brick you wouldn’t be able to teach
writing to children.)

• The power of the rectangular grid as a tool for organizing
thought gives us insight into how our eye-brains work. For
example, the seven-column monthly calendar simplifies for us
the unification of the (otherwise incommensurate) seven-day
week and the 28-, 29-, 30-, or 31-day month. Many business
consultants use 2-by-2 grids for simplifying choice-making
situations. One of my favorite examples of the 2-by-2 grid as a
conceptual tool: place four U.S. presidents in the following grid.

 Smart Stupid
Active
Passive

• Indeed, the rectangular grid is the conceptual model of the
groundbreaking GUI tool–the computer spreadsheet embodied as
VisiCalc, 1-2-3, and Excel–that made digital technology useful
to millions of people.

The boundary between the
understanding elite and the

dependent masses shifts, and
understanding becomes universal

Widened understanding is
enabled by tools that are well

matched to our hand-eye skills

© 2008-2009 Mel Conway - 6 - Revision date: 2/20/2009
conway.mel@gmail.com

The Thesis
We have now laid the foundation for the question to be addressed by this
paper:

What will it take for the majority of the population to
understand the technology of GUI tools?

This question is important because digital technology is the dominant
technology of our era and we increasingly participate in our society and
economy through the use of GUI tools. Our dependency on elite
intermediaries for the use of such a key technology cannot be a social
good.

My answer to this question is analogous to the way arithmetic has been
made accessible to elementary-school children: make it concrete and
manually manipulatable. In this section I describe in three steps a way to
think about, and actually build, GUI tools using hand-eye skills,
analogously to the way an amateur carpenter might build a dog house
using hand-eye skills and a few hand tools. Hence the title of this paper:
“Build Software Like Houses”.

Consider this task. You are given two pieces of wood, a hammer, and a
nail, and asked to drive the nail into both pieces so they are fastened
together. Here are two conceivable methods for performing the task.

1. Pick up the hammer and drive the nail into the two pieces of
wood.

2. You have a robot that inputs nail-driving programs and executes
them. Write a program that will be understandable by this robot,
and give it to the robot.

Of course the choice is a no-brainer. But the example is not frivolous
because the way we build GUI tools today is more like method 2
(programming) than method 1 (hand-eye construction). The more you
think about method 2 the harder it seems to get. What language do you
use to communicate with the robot? How do you tell the robot where to
find the wood and the nail? How do you tell the robot how to deal with
contingencies such as a bent nail or a hard knothole? Clearly, our hard-
won hand-eye skills deal with a lot of questions implicitly in method 1
that we have to deal with explicitly if we choose method 2.

Is there something essentially different between programming and hand-
eye construction? If so, what is it? I have identified four essential
attributes of a hand-eye construction process: unity, immediacy,
continuity, and interactivity; I describe these in Appendix 1.

The first step in the development of the thesis is this assertion:

A necessary condition for GUI tools to be explainable in
elementary school (that is, to be widely understandable)
is that they be constructible using a hand-eye process.

Widespread
Understanding
Requires Hand-eye
Construction

© 2008-2009 Mel Conway - 7 - Revision date: 2/20/2009
conway.mel@gmail.com

In this second step I present an alternative metaphor for the internal
workings of GUI tools that is close enough to being concrete that it can
be visualized and talked about by elementary-school children, given
good instruction. In the third part of the thesis I shall describe a hand-eye
tool for building GUI tools that conform to this metaphor.

Here are the parts of the metaphor.

• Lumps of data flow through pipes. Such a lump might be, for
example, all the information about one person in a “card” of a
computer’s address book.

• The lumps flow from left to right in a plumbing network, some
originating at files or databases at the left end of the network.

• Some lumps of data end up at the right end of the network,
showing up on the user interface.

• On its way from its source toward the user interface the typical
lump of data passes through one or more “transformers” that
split up, combine, or otherwise change the form of, these data
lumps. For example, several address cards might be combined
into an address book, or the parts of one card might be separated
into name, address, etc. The transformers have “connectors” that
connect to the pipes. The data lumps flow into “sink” connectors
on the left side of each transformer and they flow out of “source”
connectors on its right side.

• The user interface is at the right end of the plumbing network.
The user is to the right of the user interface, looking at it. The
user interface can be thought of as a back-projection screen, and
there are special transformers that cause data lumps to show up
on the user interface; these “user-interface transformers” can be
thought of as physically “projecting” the lump of data entering it
onto its part of the screen.

I have worked with this conceptual model for years, and I have become
convinced that it is a generally applicable model for GUI tools, and that
there is a reasonably-sized basic set of transformers that makes it so.

The following figure shows an example of the user interface of a GUI
tool (the user interface is on the right of the figure) and the plumbing
network (on the left of the figure) that makes the GUI tool work. (In this
example the GUI tool on the right is a Microsoft® Windows® program.)
The function of this tool is simple: the user selects one name in the list of
state names shown (in this case, the user clicks in the list box), and the
name of the selected state shows up on the line just above the list box.
This example is trivial, but it shows all the elements of the plumbing
network described above, and it shows some of the implicit behaviors of
transformers that give the model its power.

A Concrete Metaphor
for All GUI Tools
Exists

© 2008-2009 Mel Conway - 8 - Revision date: 2/20/2009
conway.mel@gmail.com

The two images in the above figure are two parts of an actual screen shot
of a computer screen on which the user interfaces of the following two
distinct programs are running concurrently (extraneous material has been
edited out).

1. The Windows program whose application window is shown at
the right. The application’s internal structure and operation is not
conventional but is in fact the plumbing diagram that is shown at
the left.

2. A visual drag-and-drop plumbing-design tool that built this
application. Projected on the user interface of this plumbing-
design tool is the network diagram shown at the left of the
figure. It is important to stress that this design tool is not a
translator; it is a what-you-see-is-what-you-get assembler of
networks. The program running at the right has the internal
structure shown at the left.*

Both programs are running concurrently. It is possible in the plumbing-
design tool to inspect the data lumps in the pipes in real time, and one
can watch them change as the user clicks on the list in the right-hand
window. Furthermore, one can modify the plumbing network (without
stopping the application) by removing or adding transformers and pipes,
and the behavior and appearance of the application on the right can be
seen keeping up with its definition on the left.

The paragraph immediately above this one characterizes the plumbing-
design tool as a hand-eye tool that meets the necessary condition stated
in the first step of the thesis development. Here, then, is the thesis.

We now have the ability to take the next major step
toward widespread understanding of the technology of
GUI tools.

* How it works is described in detail in US Patent 6,272,672.

A Hand-eye
Construction Tool
That Builds GUI Tools
Exists

© 2008-2009 Mel Conway - 9 - Revision date: 2/20/2009
conway.mel@gmail.com

The Way Forward
What areas of application can we use to implant this disruptive
technology? Two candidates occur to me: software development and
education. I present my thoughts on each below, more to solicit reaction
than to be definitive.

I have studied at length the potential impact of the technology described
here on the development process for software-based GUI tools of all
types and I believe that, if the technology were to be widely adopted, it
could profoundly simplify the development process and reduce costs.
There are two main reasons for this impact: network effects of shared
development of a growing body of reusable transformers and the
entrance into the workforce of a large number of people who could not
otherwise have become productive application developers. Additionally,
for some classes of GUI software applications, the development process
would become more informal and open.

My experience describing this opportunity to many technical audiences
over more than a decade suggests that the uptake of this technology by
the software development community is unlikely. There is a large
investment in the existing ways of doing things that, for valid reasons,
will resist a change in conceptual paradigms. Alternatively, the approach
could be used just as a design methodology that would lead to better cost
estimation and smoother development, but there is a lot of competition in
this area that makes similar claims.

There is one corner of software technology that is too new to be
settled: development of applications that reside in the Internet
“cloud”. Appendix 2 contains a description that I have presented
of a cloud-based application-development service.

To teach the model described here in high school or college as a
construction methodology might be pedagogically interesting and
ultimately valuable to students, but people of high-school and college
age are looking for knowledge that is directly transferable to
employment. This means using available instruction time for teaching
existing software development methods.

My conclusion is to go where the deterrents enumerated above do not
exist, yet where there is a strong attraction to quick uptake of confidence
and transferable skills: primary- and middle-school education.

I foresee teaching children to build GUI tools that will be interesting and
educationally valuable to them—games, interacting robots, and social
networking environments, for example. Having experienced powerful
success the children will have confidence in their intuitions about the
workings of GUI tools. This confidence then becomes an aptitude for
learning existing software technology.

For an education project of this nature to be realized, the existing
construction tool would be a prototype for development of a new

This section is a work in process

Software
Development

Education

© 2008-2009 Mel Conway - 10 - Revision date: 2/20/2009
conway.mel@gmail.com

construction tool robust enough for the primary classroom environment;
additionally, educational materials would have to be developed. These
are substantial activities that would take time and resources and would
therefore require a strong commitment to the outcome.

Where can we find a strong desire to empower school children with
confident understanding of GUI technology? The global audience of the
One Laptop Per Child project has demonstrated its attraction to the
empowerment that easily learned computer technology grants young
students. In the United States, however, the idea of engaging primary-
school children in GUI technology does not yet exist on a large scale;
this idea will grow as a political consensus grows that primary education
is preparation for global economic life. Perhaps such a political
consensus is beginning to develop at this moment in U.S. history.

* * *

The ideas presented above deal with doing better something that is being
done now—more or less. What follows proposes doing something vital
that is not being done at all.

As a public high-school teacher I learned that my students had no
preparation for collaborative problem solving. Here is an except from my
“Urban Teaching” blog.*

Virtually all of my students arrive with no understanding of
working in teams. They have neither expectations nor skills for
working together in order to work more effectively. I have
experimented extensively with attempting to create team problem-
solving environments in my classes, and I have concluded that
what is arguably the most important workplace skill that can be
given to high school students, the ability to create and work
together in teams, has been almost completely ignored.

The technology described in this paper offers a platform for teaching a
21st-century skill now ignored by our schools: cooperation on globally
distributed construction projects. (Indeed, our locally focused education
system has no way to teach—or even to discover the need for—such a
globally focused skill.) The nature of the construction tool as a web
application and the extensibility of the transformer library are enabling
technologies for cooperative construction projects that can be carried out
over the Internet.

I see an opportunity to develop a curriculum in geographically
distributed software application development. The focus of the
curriculum would be project management but the students would be
building several things: skills in working cooperatively at a distance,
software skills, and a valuable software application. An important part of
curriculum development would be the definition of a deliverable
application that will be both useful and important to the students, for
example a tracking system for global temperature change.

* The essay “A Radical Proposal” at http://web.mac.com/melconway .

© 2008-2009 Mel Conway - 11 - Revision date: 2/20/2009
conway.mel@gmail.com

Appendix 1: The Four Elements of the
Hand-eye Construction Process

One important feature of spreadsheets is that they react immediately to
changes made by the user. As humans with a long history of using
manual tools, we take such a characteristic for granted. The process of
pounding a nail through two pieces of wood is a directly interactive
process. You don’t map out and write down in advance a step-by-step
program describing your nail-pounding plan. You hit the nail. You see
what happens; that tells you how to hit the nail the next time. When it’s
driven home you stop hitting it. Almost all manual tools used by people
in their work depend on a tight hand-eye feedback loop for their use,
from the surgeon’s scalpel to the potato peeler.

The conventional software construction process (the spreadsheet being a
notable exception) isn’t like that. Building a software application using
most contemporary tools is more like baking a cake without a recipe.
You decide how you want the cake to be, you use your considerable
experience to guess at a recipe, and you write the recipe down. Then you
spend an hour executing the recipe, i.e., putting together the batter and
baking it. Not quite. Do it again. The process takes a lot of record
keeping and patience. That’s what most of today’s programmers do.

One of the problems with arriving at a recipe this way is that the output
(the cake) bears no physical or logical resemblance to the input (the
recipe). Executing a recipe (i.e., baking a cake) creates something totally
different from a recipe. So you have to combine guesswork and
experience to decide how to change the input in order to fix the output.
There is an inconvenience in this: you have to wait an hour to see
whether your changes improved things. There is a more serious problem:
it’s not necessarily obvious how to convert your dissatisfaction with the
output into a change to the input. It’s not like pounding a nail where if
the thing bends you see immediately how to straighten it.

We have concluded that, in order for building software to be far simpler
than it is today, the construction process must have four attributes that
will make building software much more like pounding nails. If the
process has these four attributes we call it a hand-eye process.
1. Unity. There is only one thing being worked on, and it’s both the

input and the output. Nailing two boards together means
transforming, in a sequence of steps, two boards and a nail into two
boards nailed together.

2. Immediacy. When the builder swings the hammer, the nail moves
and the eye-brain immediately understands the new state of the thing
being worked on.

3. Continuity. Small actions produce small changes. Hit the nail
harder and it will probably move more. This characteristic helps to
tell you how hard to hit and when to stop.

4. Interactivity. Strategizing is part of the hand-eye feedback loop.
How you hit the nail this time depends on what it did the last time
you hit it. The sequence of steps required to do the whole job is not
predetermined; each step determines the next.

Note: This discussion is about
construction of software, but its
conclusions are not restricted;
the definition applies to all
construction processes.

© 2008-2009 Mel Conway - 12 - Revision date: 2/20/2009
conway.mel@gmail.com

Appendix 2: A Widely Usable Web Application Development Service

Use of the Service. This service enables its user-developers to build interactive Web-based

applications capable enough to meet the needs of businesses.

Access to the Service. A user-developer can access the service from within any contemporary

broadband-connected browser.

Graphical Development. The language with which the user-developer works is a concrete,

visual “plumbing” metaphor. Simple applications are visual and easy to build. Complex

applications are complex, but still visual and still possible to build.

The User-Developer’s Application Model. The user-developer of this service creates and edits

visual plumbing diagrams within a Web browser. For a potentially large population of user-

developers the plumbing application model is more understandable than programming, yet

generality, scalability, and application performance are not sacrificed. The plumbing network of

an application can be hierarchically structured to limit visual clutter and enhance comprehension.

The service enables encapsulation of plumbing diagrams to create new transformer definitions;

these can then be added to the transformer library .

Location of the Application Server. By default the application the user-developer is building

executes from the service’s server. Whether the service also offers the option to export a finished

application to the user-developer’s own server is a business decision.

A Suggested Collaboration Model. The service offers “open source” transformers in public

libraries. The service can choose to offer private transformer libraries to certain users.

A Suggested Public Project. The service can be the focus of a world-wide open-source project

that develops a library of application transformers and business objects with which the service’s

user-developers can build enterprise-level applications.

Risk Assessment. The following table describes the estimated current technological risks in the

development of the proposed service.

Demonstrated and
documented

Considered feasible,
not yet demonstrated

Needs to be demonstrated

How the user-developer’s

applications work.

How the development tool

works.

How transformer library

extensibility works.

How the model is scalable and

complexity can be hidden.

(Full disclosure is in U.S.

Patent 6,272,672. The author

is the sole inventor. The patent

has never been assigned or

licensed.)

Determination of a practical

set of primitive transformers—

built by coding—from which

all other transformers are built

by encapsulating plumbing

diagrams. (The estimated size

of the primitive transformer

library is 100 to 200.)

A large-scale demonstration

project.

Can a user-friendly drag-drop-

style wiring tool be built to

run over the Web with

acceptable performance? The

technology would be

partitioned as follows.

• The plumbing-diagram-

structured application the

user is building is in the

service’s server.

• The user’s browser presents

an editable plumbing-

diagram view of a portion

of the application’s

structure.

