

Copyright © 2002 Melvin E. Conway - 15 - melconway@B2Bwise.com

Appendix A. Build a Text Editor

This Appendix will walk you through building a simple
application. Most of the illustrations will be screen shots
from a prototype of the construction tool (itself a computer
application), called theSoftware Construction Set.

Figure A.1 shows the two windows presented by the
Software Construction Set. There is the largeconstruction
windowwhere the program is built, and at the lower right is
a little window called theControl Panel.

You will work only with the left-hand button of the Control
Panel, the one shown with the red traffic light. Clicking this
button stops and starts the program you are building, and
the color of the traffic light alternates between red and
green.

The vertical left-hand pane of the main window, the one
with the vertically arranged icons, is theComponent
Palette. There are several of these palettes, selected by the
list box at the lower left-hand corner of the large window.
The element of the list box which has been highlighted in
the figure is called “U.I.[user interface]-Windows”. You
will be building the application by dragging icons from one
or more palettes to the workspace (the big pane) and wiring
them up.

Figure A.1
The construction window and the control panel of the Software Construction Set

Copyright © 2002 Melvin E. Conway - 16 - melconway@B2Bwise.com

Figure A.2 below shows the starting point for most
applications. The application you have built with these two
components opens an empty window when you click the
traffic-light button on the control panel and turn it green.

The Resizable Window component has twosend
connectors(on the right side; they output flow objects) and
threereceive connectors(on the left side; they receive flow
objects). The top send connector is responsible for opening
the application window (i.e., the window that is projected
by the Resizable Window component) and the bottom
connector is responsible for closing the application
window. Later we’ll consider the “When Go” component

at the right end of the wire. For now it’s sufficient to
know that the When Go component is responsible for
telling the Resizable Window component to open the
window it is projectingwhen you click the traffic-light
button from red to green.

Figure A.2
The starting point of most applications

The Two-component
Starting Point

Copyright © 2002 Melvin E. Conway - 17 - melconway@B2Bwise.com

Figure A.3 shows the computer display after you click the
traffic-light button. The traffic light has turned green,
indicating that the application has been started. A new
window appears, with “untitled” in its title bar.This is the
window projected by the two-component application you
have built, which is now running.(The windows have been
resized and made to overlap in order to fit the picture to the
page.) The function of the Resizable Window component at
the left of the wiring diagram is to project the border of this
application window.

Your task now is to add features to the application window,
one by one.

Figure A.3
The window projected by the running program

Run The Application

Copyright © 2002 Melvin E. Conway - 18 - melconway@B2Bwise.com

First you put some text into the title bar.

The “Text Source” component sends a text flow
object which is fed into the title bar (the top) receive
connector of the Resizable Window component. You see
the effect of this text flow object in the application window.

Now you see that, in this object-flow model of software,a
flow object is simply a carrier of data. The flow object that
flows from the Text Source component to the Resizable
Window component carries data whose value is the
character sequence “Fred”. The data carried by a flow
object can be any object; in particular it can be a “business
object” that has a message-based interface with those
components that interact with it.

Figure A.4
A title has been added to the window

A Text Flow object

Copyright © 2002 Melvin E. Conway - 19 - melconway@B2Bwise.com

Now that you know that the flow objects that flow along
wires are simply carriers of data, we can address the flow
object that runs from the Resizable Window component to
the When Go component. This flow object is called a
command flow object, because the kind of data it carries is
called acommand.

Figure A.5

For every flow object there is one send connector in the
total wiring diagram from which that flow object
originates. For every command flow object,its originating
send connector is associated with a particular action of the
component this send connector is attached to. For example,
in Figure A.5 the Resizable Window component’s action
associated with the top send connector is to open the
window the component is projecting.

Each send connector of the Resizable Window component
immediately puts out its respective command flow object.
If there is a wire connected to that send connector the flow
object will flow down that wire. The job of every command
carried by a command flow object is to “stay in touch” with
its originating send connector, and to tell that connector
when to tell its component to execute the action with which
the connector is associated, in this case, opening the
application window. The command flow object, in its
travels through the wiring which carries it, will be received
by one or more components which are able to tell the
command flow object’s command when to tell its
originating send connector to start the action.

Here is how it works in Figure A.5. The When Go
component can, in effect, say “Now!” to any command
flow object that flows into it. This is called “picking” the
command flow object’s command. When a command is
picked, the command says “Now!” back to the send
connector from which it originated. This originating send
connector then causes its particular action to be performed
by its component, in the case of Figure A.5, opening its
application window.

What tells the When Go componentwhento pick the
command? The particular function of the When Go
component is to pick whatever command it receives when
the person using the Software Construction Set clicks the

traffic light button in the Control Panel and changes it
from red to green.

The Command Flow Object

Copyright © 2002 Melvin E. Conway - 20 - melconway@B2Bwise.com

A component that sends a command flow object has a send
connector from which the command flow object originates;
that send connector determineswhatthe action is that the
command will cause the component to perform. But
another component, one which receives the command flow
object, determineswhenthat action will occur. In Figure
A.5 and to the left, thewhat is determined by the top send
connector of the Resizable Window component, and the
whenis determined by the When Go component.

When the receivingwhencomponent decides to pick a
command it has received, the following sequence of events
occurs.

1. The receivingwhencomponent picks the command
carried by a command flow object the receiving
component has received.

2. The picked command then tells its originating send
connector to execute its action. (The command and
the receiving component don’t know what that
action is, nor does the receiving component know
which component emitted the command flow
object.)

3. The originating send connector tells its component
to perform thewhataction associated with that send
connector.

The concept of a command flow object is unique to this
conceptual model. It may look a little strange to those who
are used to thinking that control information flows in the
direction that the above sequence of events occurs, i.e.,
from right to left, at the time of the pick. In our way of
thinking, the command flow object flows in the same way
that all flow objects do, from left to right, and the flow is
complete before the pick. The above sequence of events is
not treated as a flow but simply as the behavior common to
all commands. This treatment of a command like any other
piece of data is important to the power of the conceptual
model.

The sending component of a command flow object
determineswhatbut notwhen, the picking component
determineswhenbut notwhat, and the wiring makes the
connection between the two by carrying a command from
the first to the second. In principle, it is possible to wire any
whatcomponent to anywhencomponent, and thewhat
component will execute its action when thewhen
component picks the command it has received.Neither
component knows or cares about the identity of the other.
This is calleddecouplingof thewhatandwhenfunctions of
the application. Decoupling is good because it simplifies
reuse of components.

A Discussion of Commands

Copyright © 2002 Melvin E. Conway - 21 - melconway@B2Bwise.com

Now that commands are out in the open you can add menus
to the application window. You are only going to add the
File/Open menu item and a few Edit menu items.

Figure A.6
Two menus are added to the window

What’s new here are two Menu components and a
Collector component. The output of the Collector
component is fed into the Menu Bar receive connector (the
middle receive connector) of the Resizable Window
component. Why do you put a Collector component there?
A menu bar is alist of menus, projected as a horizontal
row. (A list of things is a collection of these things in a
specific 1..2..3.. order.) You will see later that each menu is
a list of menu items,each of which is simply a projection of
a command,projected as a vertical column. By convention,
the first menu in the menu bar will be the File menu and the
second menu will be the Edit menu. The Menu Bar receive
connector of the Resizable Window component is therefore
expecting to receive a list of Menu flow objects.

The function of every Collector component is to receive
various things and to output a list of these things. The top
receive connector will receive the thing that becomes first
in the list, and so on. The fourth receive connector is
different. It receives alist (usually from the output of
another Collector component) and tacks this list on to the
end of the three-element list it has built. Thus, Collector
components can be daisy-chained to build lists of any size.
(The icon of the Collector component is meant to suggest
wrapping a bunch of wires into a cable.)

Add Menus

Copyright © 2002 Melvin E. Conway - 22 - melconway@B2Bwise.com

In Figure A.7 you have typed the names “File” and “Edit”
into the Menu components. You see that each Menu
component projects into its part of the window’s menu bar.

Figure A.7
Names have been added to the menus

Of course if you click on the File or Edit menu of the
application window no menu will drop down because you
have not created any menu items (which are projections of
commands). That is next.

Name the Menus

Copyright © 2002 Melvin E. Conway - 23 - melconway@B2Bwise.com

Here is an example of the useful practice of adding some
temporary wiring as a “placeholder” for some wiring which
will come later. The “Beep” component has been wired in
(through a Collector, because the Menu component expects
a list of command flow objects) to be projected as the first
menu item of the File menu. The Beep component sends a
command flow object which causes the computer to beep
when its command is picked.

Notice the “Add Label” component, with “Ding” typed into
it, between the Beep and the Collector.Every flow object
has the ability to provide its own label.In the case of a
command which is projected as a menu item, the command
flow object’s label becomes the text of the menu item. The
function of the Add Label component is to pass any input
flow object through to its output, meanwhile tacking on to
that flow object the typed-in label. You see that “Ding”
actually shows up as the first item of the File menu.
Clicking that menu item picks Beep’s command and causes
the computer to beep.

Finally, notice that the Beep’s command flow object is an
example of a flow object that has traveled a long way,
touching six components (including Beep) in the process,
and finally ending up projected onto the user interface as a
menu item.

Figure A.8

Add a Menu Item
Placeholder

Copyright © 2002 Melvin E. Conway - 24 - melconway@B2Bwise.com

The meat and potatoes of the application you are building is

the Text Edit component. It has two jobs.

1. It projects a rectangular area of text into the main
content area of a window.

2. It outputs a list of several editing commands, which
typically go into an “Edit” menu.

The Text Edit component is the component that performs
the projection function shown to the left. The Text Edit
component’s receive connector (on the left edge) accepts a
text flow object; this text flow object supplies the body of
text which is projected into the window. In Figure A.9 the
bottom send connector of the TextEdit component is wired
directly into the bottom receive connector of the Resizable
Window component. This is how the Resizable Window
component knows to work in tandem with the Text Edit
component in the projection of both the border of the
window and its content area.

The top send connector of the Text Edit component sends a
list of standard editing command flow objects which are
fed directly into the Edit Menu component. You can see the
resulting menu items in the application window.

Again, you wire a temporary placeholder to supply text to
the input of the Text Edit component. This placeholder is a
Text Source component holding “Now is the time …”.

Figure A.9

Addition of the Text Edit component

Add the Text Edit
Component

Copyright © 2002 Melvin E. Conway - 25 - melconway@B2Bwise.com

Perhaps you decide that what you have built so far (minus
the temporary placeholders) looks like something which
other people might profitably use instead of being required
to reinvent it. You will now see how the Software
Construction Set canencapsulatea wiring diagram and turn
it into a new component for use in the Software
Construction Set.

After reflection, you decide that your new component will
be of maximum utility to others if you give these users the
ability to determine:

1. the content of the title bar of the window,

2. the list of File menu items, and

3. the text which will be projected into the main
content area of the window.

What you must do is find a way to build a newcomposite
componentwith three receive connectors for flow objects
whose data determine the values of these three variables.
You do this withconnector components. Figure A.10
shows how you use these connector components. You must
assign a name to each connector component to identify it
on the outside; here you have used “Title”, “File”, and
“Text”.

Figure A.10
Making part of a wiring diagram reusable as a new component

The crosshatched part of the icon of the connector
component is meant to suggest the wall of the new
component, through which wall the receive connector is
connecting the inside of the new component to its outside.

Encapsulation

Copyright © 2002 Melvin E. Conway - 26 - melconway@B2Bwise.com

After creating the wiring diagram in Figure A.10 above,
you select the “Encapsulate” menu item under the
“Program” menu of the Software Construction Set. Part of
the behavior of this menu item is to ask for the new
component’s name; you enter “EditWindow”. After the
command completes execution you scroll down to the
“User Defined” component palette; there is the new
EditWindow component. (The plain look of these
composite component icons comes from the fact that they
are computer-built.)

Figure A.11
The new EditWindow component

Create a User-defined
Component

Copyright © 2002 Melvin E. Conway - 27 - melconway@B2Bwise.com

Now the job is to use the new EditWindow component to
continue to build the text editing application. A possible
first task is to “smoke-test” the component. (This is a term
from the culture of electronic engineering: turn it on and
see if it goes up in smoke. Of course it won’t go up in
smoke, but it would be nice if it did what we expect it to
do.)

Test the component by dragging it into
the workspace and wiring some
temporary placeholders to it. You see in
Figure A.12 that the body of text, the
title bar, and the Edit menu are properly
projected. The two text flow objects
have “gone through the wall” of the
new EditWindow component to the
wiring diagram which you encapsulated
inside it (see left).

Figure A.12
Testing the new component

Test the User-defined
Component

Copyright © 2002 Melvin E. Conway - 28 - melconway@B2Bwise.com

The major remaining task is to obtain the text file
“Sonnet.txt” and to feed its contents into the “Text” receive
connector of the new EditWindow component. To
implement the File/Open menu item you must know that
the “File” receive connector of the EditWindow component
is expecting a list of commands.

First you must build an OpenFile composite component or
use an existing one. (This component will be available in a
complete product, and it won’t be necessary to build it.)
When the command sent by the “Open” send connector of
the OpenFile composite component is picked, OpenFile
opens a dialog window that allows you to navigate the file
hierarchy and find the “Sonnet.txt” file. Figure A.13 shows
the application window just before you click the “Open”
menu item. (Note that the “Open” label in the menu item
derives from the text typed into the AddLabel component,
not the name “Open” which you assigned to the top send
connector of the OpenFile component when you built it.)

Figure A.13

Open the Text File

Copyright © 2002 Melvin E. Conway - 29 - melconway@B2Bwise.com

There are several new aspects to Figure A.14 below, and
we’ll be considering them one at a time. First, notice that
the “File” send connector of the OpenFile component has
two wires leading away from it. The way to think about this
is thatthe same flow object travels down both wires.* The
flow object sent from the “File” send connector contains a
file object. A file object isnot the text contents of the file; it
can be thought of as the file name plus the ability to find
the file in the file system.

Consider the lower wire out of the “File” send connector of
OpenFile; this wire goes to the FileContents component
(the one with the magnifying glass in its icon). The
FileContents component receives a flow object carrying a
file object, finds the file, and sends out a flow object
carrying thecontentsof the file (in this case, its text). This
output flow object is then wired to the “Text” receive
connector of the EditWindow component. Figure A.14
shows that the text has found its way to the application
window.

Notice that some text has been selected and the “Copy”
menu item is about to be clicked.

Figure A.14

* If this idea bothers you, think that the flow object is really inside the
component from which it originates, and different pointers or
references to it travel down different wires.

Obtain the Text

Copyright © 2002 Melvin E. Conway - 30 - melconway@B2Bwise.com

After copying the selected text paste it after the poet’s
name. You see the result in Figure A.15, which suggests
that the Text Edit component is implementing Copy and
Paste correctly.

Figure A.15

Now consider the upper wire coming from the “File” send
connector of the OpenFile component. This goes to the
“Label” component. Recall that every flow object can
provide its own label. In the case of a file object flow
object, this label is the name of the file (that is, unless this
label is overridden by an “Add Label” component).
Therefore, the output of the Label component is a text flow
object carrying the character sequence “sonnet.txt”. This
flow object goes to the bottom receive connector of the
“Concatenate” component, which tacks together two pieces
of text. You can see the output of the Concatenate
component in the title bar of the application window.

Test Copy-Paste

Copyright © 2002 Melvin E. Conway - 31 - melconway@B2Bwise.com

Finally, the application must have a way to exit. The Exit
component, with one send connector and a red-light icon,
sends out a command flow object with the default label
“Exit”. When the command is picked, the program exits
and the traffic-light button in the Control Panel turns back
to red.

Figure A.16

Complete the Application

Copyright © 2002 Melvin E. Conway - 32 - melconway@B2Bwise.com

Appendix B. The Tight Coupling Between Data
and Its Projections

Every application architecture must have a solution to the
problem of updating displays. Let’s say that an item of data
is projected in two different windows. There must be a
provision for it to be automatic that if the application’s user
changes the data using one window, the projection will be
updated in the other window to reflect the new value of the
data. Here is a more general statement of the requirement.
It must be possible so that, no matter by what means an
item of data becomes changed, all projections of that data
item must continually reflect its current value.The solution
to this requirement is called theupdate protocol, and will
be described in the next section.

First we shall consider an application which illustrates in
several different ways how the results of the update
protocol look. The structure of the application is shown in
Figure B.1. The window with “Big Three” in the title bar is
the application window. The components of the program
have been numbered as an aid to the discussion.

The content area of the application window contains a
projection of two panes: a text entry line (projected by
component 7) and a list box (projected by component 6).
We can consider the outputs of components 6 and 7 to be
pane flow objects; that is, they carry data calledpanes.*
Since the content area projects multiple panes, components
6 and 7 feed through a collector component, so a list of
panes goes into the bottom receive connector of component
10. The two panes are projected by component 10 in the
application window’s content area. (We won’t discuss here
how the positioning of these panes in the window is
specified.)

Figure B.1

* There is no need for the pane object to carry the projected data. The
data need go no further than the pane component, which projects it.

The Display Update Problem

Copyright © 2002 Melvin E. Conway - 33 - melconway@B2Bwise.com

Components 1, 2, and 3
send text flow objects. The
output of component 4 is a
flow object which carries a
three-element list of flow
objects carrying the
character strings "Larry,"
"Curly," and "Moe."

Component 5 (called a
selector) dynamically chooses one element of the input list
and sends the selected element from its lower send
connector.* The selected flow object carrying one of the
three character strings then flows into the text entry line
component 7, which projects it into the application
window. At the time the screen shot was made, the selector
component was selecting the second element, "Curly", of
the list.

How did the selector component get told to choose the
second element? Note that the selector’s top send connector
is wired to the list box projector, component 6. A selector
component with its top send connector wired to the list
receive connector of a component with a choose-one-of-n
function (there are several such user-interface components,
for example: list box, popup menu, radio button set) is a
pattern which appears frequently. The heavy line inside the
selector icon, component 5, rising from the receive
connector and running across to the top send connector,
suggests carrying the whole input list up to the selector's
top send connector, from which a flow object carrying the
list is carried to the list box component 6, which projects it
into the application window, as you see in the figure. The
selection position of the selector component and the
selection shown in the list box are tightly coupled. When
the user clicks in the list box in the application window the
selector and the list box components interact behind the
scenes so that the selector position always reflects the
selection in the list box.**

* The icon art is meant to suggest a multi-pole switch which selects one
wire in a cable and routes the flow object on this wire to the lower send
connector of the selector component. This icon is static; the switch will
always appear to be on the third wire.
** An incorrect way of doing things would be to feed the selected
element out the right side of the list-box component instead of feeding
it out of the selector component. This approach comes from the
conventional dataflow view but does not incorporate the projection
concept. The function of the selector component must be separate from,
and tightly coupled to, the user-interface choice function.

Copyright © 2002 Melvin E. Conway - 34 - melconway@B2Bwise.com

Flow Object Dependents. For every component, each of its
receive connectors is defined to be either subject to the
update protocol or not subject to the update protocol. If a
receive connector is subject to the update protocol, the
receive connector must register itself with each incoming
flow object as adependentof the flow object. Then, each
time that the flow object or its data undergoes a change, the
flow object notifies the receive connector that a change has
occurred. The receive connector then notifies its
component, giving the component a chance to look at the
flow object (and the data the flow object is carrying) to see
if the component should re-perform its function based on
the changed input. Figure B.2 shows with arrows which
receive connectors are subject to the update protocol.

Figure B.2

The Update Protocol

Copyright © 2002 Melvin E. Conway - 35 - melconway@B2Bwise.com

How Selection Works. What we’re
going to show now is that the tight
coupling between the selector
component 5 and the list box
component 6 is an application of the
update protocol. What makes this so
is the nature of the flow object that
is received by the list box
component 6; this flow object isnot

the same as the flow object received by selector component
5. The flow object received by list box component 6 is
carrying a piece of information that the input to selector
component 5 is not carrying. What is it?

Let’s look at this from the projection perspective.
According to the theory, the list box projects the data
entering component 6. If you look at the list box projected
in the application window you see that there is indeed an
additional piece of information: information about the
selection, indicated by the highlighting of the “Curly” line.

Selected List Data Type. Figure B.3 shows the difference
between the “List” data type which enters component 5 and
the “Selected List” data type which enters component 6.
The “selection” part of the Selected List data item specifies
that “Curly” (i.e., number 2 of the list) is selected. This part
of the Selected List item is projected in the list box as the
highlight on the “Curly” line.

Figure B.3
Difference between the List and Selected List data types

Copyright © 2002 Melvin E. Conway - 36 - melconway@B2Bwise.com

Selector State Variable. Selector
component 5 carries an internal state
variable which indicates the position
of its virtual selector switch; its value,
in the case shown, is 2. This selector
component constructs the data output
(the selected list, which will be
carried by a flow object from its top
send connector) by combining the
input of its receive connector (the list)

with this internal state variable (the selection).

Owner. Every component that creates a new variable, as the
selector component does with its selection variable, is said
to ownthat variable. The selection value in the Selected
List value sent by selector component 5 is owned by that
selector component. Other components, which receive a
flow object bearing that variable, may have the ability to
change the value of that variable. Any component which
changes the value of a variable must notify the variable’s
owner that a change has occurred.*

List Box. The list box component has the ability to change
the selection part of the Selected List value which it
receives. It does this in response to an event which comes
to it from the user interface. (Notice that the selection
variable is in the selector component, and that’s where it is
changed.) After changing the value of the selection
variable, list box component 6 notifies the Selected List
flow object, which notifies the selector component 5 of the
change.

Selector. In response to receiving this notification, the
selector component looks at its selection variable and
rotates its virtual switch appropriately, selecting the
specified element of the input list. It then sends a new flow
object carrying that new element out its lower send
connector.** Finally, it notifies the flow object, which
notifies the dependents of the Selected List flow object to
look at their possibly changed inputs.

Notice that the selector component plays no role in
changing the value of its selection variable. Also notice that
if there were several list boxes wired to the selector
component, the selection in all of them would change in
response to a user changing the selection of any one of
them.

* You may notice that what is being described here also accounts for
how commands work. In other words, commands are nothing
exceptional either.
** A new flow object will propagate down the wiring, so the update
protocol is not necessary for its dependents to be alerted; its arrival at
the receive connector does that.

Copyright © 2002 Melvin E. Conway - 37 - melconway@B2Bwise.com

Now select "Moe" and remove the final "e" by editing in
the text entry line. Here is the result.

Figure B.4

Looking at the "Big Three" application window in Figure
B.4, we see that the change from "Moe" to "Mo" in the text
entry line propagates to the corresponding line in the list
box. This is because the editing operation directly changes
the text where it isowned, namely at its original source, the
bottom text source component. All dependents of this text
value, the list box component and the text line component,
are then notified of this change. The former updates its
projection; the latter ignores the update because, since it
was the one that started the whole sequence, it knows that
its projection is already correct. This selective inhibition of
re-projection, which avoids spurious flashing of the
display, is also part of the update protocol.

What-You-See-Is-What-You-
Get Is Not an Illusion

Copyright © 2002 Melvin E. Conway - 38 - melconway@B2Bwise.com

Figure B.5 has the same information as Figure B.4, except
that it is shown in the context of the Software Construction
Set.

Figure B.5

Look at the bottom text constant component in the wiring
diagram in Figure B.5; it now shows "Mo." This
occurrence is not in the application window but in the
workspace. How did that happen? Let’s answer by
reviewing what is projecting what.

Copyright © 2002 Melvin E. Conway - 39 - melconway@B2Bwise.com

Let’s look at Figure B.6, below.

Figure B.6
The Software Construction Set and the application,

shown with the windows they project

You know that a function of the application being
developed is to project the application window (both are on
the right half of the figure). You also know that the wiring
diagram is projected onto the workspace, which is a pane of
the construction window, and that a function of the
Software Construction Set is to project the construction
window (both are on the left half of the figure).But what is
the workspace pane in particular a projection of? Answer:
The internal structure of the application (lower right!.In
other words, What-You-See-Is-What-You-Get is not an
illusion. It’s how the Software Construction Set works.

Copyright © 2002 Melvin E. Conway - 40 - melconway@B2Bwise.com

Figure B.7 is a redrawing of The Software Construction Set
and the application with emphasis on the Resizable
Window component of the application.

The user’s application (the bottom circle on the left, a.k.a.
Fred) is a container that contains its components. The
software construction set (the top circle) in turn contains
the user’s application. The function of the Software
Construction Set is to project its two windows: the
construction window (containing the workspace) and the
Control Panel. The Software Construction Set doesnot
draw the components inside the workspace.

Each component of the application is an object with two
behaviors: the “build” behavior and the “run” behavior.
Both of these behaviors are going on at the same time,
while the Software Construction Set is operating.

The build behavior of every component is the same; among
other things, it projects its icon onto the workspace. That is,
the build behavior manifests itself in the workspace.

The run behavior of each component is specific to the
component type. The run behavior is the component’s part
in the behavior of the application. If the component is a
user interface component (as the Resizable Window
component is) then the run behavior of the component
manifests itself in the user interfaceof the application.

Figure B.7
The projections happening in the Software Construction Set

What Is the Software
Construction Set?

Copyright © 2002 Melvin E. Conway - 41 - melconway@B2Bwise.com

When you edit the workspace, you are modifying the
structure of the application. The structure of the application
is tightly coupled to its projection in the workspace.

If you have programming experience, you see thatthis is
not your traditional edit-compile-run-debug development
cycle. There is no translation from “source” to “object”
language.The Software Construction Set is a visual editor
of an object structure.This object structure is the
application you are developing. The application has its own
autonomous behaviors, which include projecting an
application window. The behaviors of the application
object structure are independent of the behaviors of the
Software Construction Set, which is operating on (i.e.,
modifying) this object structure.

