
Working Draft

© 2017 Melvin E. Conway - 1 - September 10, 2017
Twitter: @conways_law

Wire Up Your Prototypes
This two-part paper proposes a role in application prototyping for a code-free wiring-model
language and its hands-on development tool.
Part I: History. Part I summarizes a half century of research into programming simplicity and boils
it all down to dozen attributes of a simplified developer-friendly workflow. Part I also links to a
video demonstrating most of these attributes.
Part II: Opportunity. I believe that this technology can reduce the communication barrier between
the development team and the client business by enabling business-side team members to build
quick-turnaround, code-free prototypes that they share with their colleagues. Part II describes the
opportunity technically, and it contains an illustrative video.

Part I: History - 2
Scope - 2

Part IA: Thinking Like a Computer Scientist - 2
IBM RPG - 2
Static is Good - 2
Partitioning the Universe of Application Languages - 2
Flow Diagrams - 3

Part IB: Thinking Like an Anthropologist - 5
The Goal of Universal Understanding - 5
The Twelve Attributes of a Modeless Workflow - 7

Part IC: Demonstration Video 1 - 8
Part II: The Prototyping Opportunity - 10

Part IIA: Identifying the Part of an Application Appropriate for Wiring - 10
Assumptions - 10
The Opportunities - 11
Application/Presentation Gateway Components - 12
Application/Domain Gateway Components - 13

Part IIB: Demonstration Video 2 - 14
Object Database Gateway Components - 14
How It Works - 16

Part IIC: Extreme Prototyping – 17
Development Process - 17
System Structure - 18

Working Draft

© 2017 Melvin E. Conway - 2 - September 10, 2017
Twitter: @conways_law

Part I: History
This is about a code-free language for building
important parts of interactive graphical user-interface
(GUI) applications.

Part IA: Thinking Like a Computer Scientist
In 1959 IBM introduced a tool, called Report Program
Generator (RPG), for converting their customers’ blue-
collar labor force of punched-card machine operators
into computer programmers. It was a brilliant solution,
enabling most of a utility billing application, for
example, to be written on a preprinted multi-column
data-entry form with almost no algorithmic
information.
Languages like RPG that are specialized for a
particular class of applications and directed primarily
to nonprogrammers are different from programming
languages. I call them application languages.

The purpose of an application language is not
to express algorithms but to hide them.

The spreadsheet is the classic example.
RPG was a specific instance of this general principle:

The universe of all applications can be
partitioned into classes according to their
underlying algorithms.

To build an application language for a particular class
you put the class’s underlying algorithm into the
application’s runtime and you devise a quasi-static
parameterization of this algorithm as the application
language.
So far I’ve found a few of these:

Linear files: There is a loop that examines one
record at a time until the end of the file. Each
record might be compared to a current record in
another file (sorting/merging) or to a stored data
structure obtained from a previous record
(billing/totaling). The treatment of one record,
including what is written, is the basis of the
application language. RPG and many early
linear-file reporting languages fall into this
category.

Scope

IBM RPG

Static is Good

Partitioning the Universe of
Application Languages

Working Draft

© 2017 Melvin E. Conway - 3 - September 10, 2017
Twitter: @conways_law

Querying relational databases: SQL is almost
an algorithm-free language. Query-by-example1
is an even better illustration of the principle.
GUI apps: The dispatching event loop at the
heart of a GUI application is the underlying
algorithm. Early Visual Basic was an elegant
example of an application language; the UI was
drawn on the screen and a simple script handled
each event.
Constraint languages: Most of the time a GUI
application just sits there doing nothing; then a
user event occurs and something has to happen.
The flow machine I’ll show you seeks a new
equilibrium of a network of wired components
after an equilibrium has been disturbed by a
user event. The spreadsheet falls into the
constraint-language category.

Around 1992 I settled on the flow, or wiring, diagram2
as the best simple application language for building
GUI applications. Many groups were working with
variants of this applicaiton model at the time3,4,5.
I was looking for usable alternatives to conventional
programming of real, not toy, GUI applications. That
required scalability, which implied abstraction and
multi-level reuse. In a wiring language abstraction
looks like encapsulating a whole wiring diagram into a
single component. The interface that would be created
by the abstraction/encapsulation process (that is, the
set of connectors on the outside of the new component)
had to be as free of constraints as possible in order for
the new component to be widely reusable.
The flow languages I was examining had problems this
way, because the components that were created by the
abstraction process had too many constraints on the
resulting interface connectors.

1. Some schemes were object-oriented
programming turned into flow diagrams. This
required separate types of wires, and therefore

1 https://en.wikipedia.org/wiki/Query_by_Example
2 https://en.wikipedia.org/wiki/Flow_diagram
3 An early inspiration was
http://www.ni.com/academic/students/learn-labview/graphical-programming/
4 https://msdn.microsoft.com/en-us/library/bb483088.aspx
5 http://sp.cs.msu.su/courses/smalltalk/Fabrik/Fabrik.html

Flow Diagrams

Working Draft

© 2017 Melvin E. Conway - 4 - September 10, 2017
Twitter: @conways_law

separate types of connectors, for messages and
for objects (the message parameters).

2. In the more dataflow-oriented models, events
and data flowed in opposite directions, so either
there were bidirectional flow paths (an
implementation nightmare) or there were
distinct data paths and event paths.

After a while I settled on a hybrid unidirectional flow
model.

1. There were only data paths. By convention they
were left-to-right, and user-interface
components were at the right end of the flow
diagram. There were only two connector types:
sinks (on the left of each component) and
sources (on the right of each component).

2. User events originating at the UI produced not a
flow but an implicit four-message-hop update
protocol: two hops from UI to the changed data
and two hops back to each UI view of the
changed data.

There were several useful ideas that showed up along
the way.

1. A projector component is a UI component that
renders its input data onto a region of the UI.
Often these are the components that have to
handle user events. The list box as a projector of
a linear collection is an example.

2. A special data type, which I now call Do-It, has
projections that receive simple user events such
as mouse clicks. Do-It projectors render buttons
and menu items.
The Do-It combined with the update protocol
has eliminated the need for retrograde flow
of user events.

3. All application data is wrapped by a wrapper
called a flow object; thus there is one interface
to data seen by all components. The role of the
wrapper as an intermediary is the reason that the
update protocol has two hops instead of one in
each direction; the payoff for this is excellent
decoupling between components.

Working Draft

© 2017 Melvin E. Conway - 5 - September 10, 2017
Twitter: @conways_law

Part IB: Thinking Like an Anthropologist
Some time around 2006 I decided that this application
flow model had to be so simple that every normal
person would be able to understand it, and possibly
even build applications using it. That meant that, like
arithmetic, writing, and calendar, the application
model would evolve historically from being the
monopoly property of a priest class (us) to being
taught in elementary school.

I taught myself to think about early man chipping
away at a stone hand-axe 100,000 years ago as a
predecessor in a continuous chain of human tool-
building, leading up to a programmer writing a
computer application today.
The epiphany came to me around 2010, as I was
watching a grandson in his high chair struggling to
grasp a Cheerio and put it in his mouth. I was amazed
at his persistence, and I realized that I was witnessing
the execution of a program built into every one of us,
one that we execute relentlessly for years beginning
with infancy:

Build the hand-eye-brain system
by interacting with the environment.

Every person is born with a built-in do-it-yourself
project to build the brain through experience.6 This
was the human universal I was looking for.

In order to be universally comprehensible the
application conceptual model must harness the
massive investment Nature has made in the
hand-eye-brain system of every human.

The second part of the conceptual refaming came from
abandoning what we as computer people take so for
granted that it’s invisible: the input-process-output
construction model. I came upon the potter at her

6 Dr. Michael Merzenich speaking on the brain as a machine that
builds itself:
https://www.youtube.com/watch?v=UyPrL0cmJRs

The Goal of Universal
Understanding

I had to stop thinking: And start thinking:

About technological particulars About human universals

Like a computer scientist Like an anthropologist

Working Draft

© 2017 Melvin E. Conway - 6 - September 10, 2017
Twitter: @conways_law

wheel with her hands on the artifact, as a better
example of a craft that exploits the hand-eye-brain
system. The new construction model, transform-in-
place, replaces input-process-output.

The application builder metaphorically throws a
lump of clay onto the wheel and, in stages,
gradually reshapes it into the desired artifact.

Clearly, the application conceptual model and the
construction tool must be thought of together.

At every stage of transform-in-place the artisan
has continuous feedback about how much has
been done and how much more needs to be
done.

I found eleven attributes of a hands-on software tool,
that I now regard as a reference model for thinking
about humane application development. To this I
added a twelfth: working with real data during
development. These are the twelve attributes of a
modeless workflow, seen on the next page. Most are
present in the first demonstration video, described
below. The first five attributes refer specifically to
modelessness of the development process. The
remaining seven attributes characterize hands-on
construction.

THE OLD WAY THE NEW WAY

What the artisan does

Keyboarding into a translator Hands on the working material

The construction model

Input-process-output Transform-in-place

Working Draft

© 2017 Melvin E. Conway - 7 - September 10, 2017
Twitter: @conways_law

The Twelve Attributes of a Modeless Workflow
The “Modeless” Part (minimizes mental gear-shifting):
1. Unified. The thing being manipulated and the end product are in the same conceptual

domain. In programming terms, the source and object languages are indistinguishable.
A corollary necessary in order to simplify the overall process and eliminate debugger
glitches: The executing application being built is isomorphic to what is in the artisan’s
hands. There is no compiler that translates a wiring diagram into a model-view-
controller application.

2. Symmetrical. The transition between “Build” and “Run” is modeless. The tool and the
application being built are peers. The artisan’s next move can be on the user interface
of either one or the other.

3. Alive with actual data. The artisan is not asked to alternate attention between building
and testing. The working material exists with real data present; the effect on the
appearance to the user of a change to either working material or application data is
seen or can be examined immediately. (See 6 and 10.)

4. Syntactically undemanding. The artisan is shown enough information to select
among self-explanatory choices. Nowhere is there a requirement for text input
according to a formal grammar.

5. Always on. During construction there is no concept of “starting the application”. When
a component instance is created in the workspace of the tool, it is already running, and
it continues to behave according to its definition. To change an application, you don’t
stop it, fix it, then start it; you just fix it. (See 6.)

The “Hands-on” Part (simulates the potter’s experience):
6. Immediate. Every modification the artisan makes to the working material is

immediately seen in its behavior. There is no perceptible delay introduced by a
translation phase.

7. Continuous. From one step to the next there is obvious continuity in the working
material’s behavior. Of course, software is severely nonlinear, but we can adapt the
mathematical definition of continuity as follows: Small changes lead to predictable
outcomes.

8. Interactive. The result of each change helps to suggest the next change. The artisan’s
brain is unconsciously engaged with the working material, like a child playing with a
construction toy. (See 6.)

9. Transparent. The tool supports the illusion that it is invisible and the artisan’s hands
are directly on the working material. Metaphorically, the working material is embedded
in the hand-eye-brain feedback loop. Given existing human-machine interface
hardware, building a tool to create such a suspension of disbelief is a challenge, but we
have examples pointing the way, such as some page-layout applications and
spreadsheets.

10. Inspectable. At any time all parts of the application can be inspected and the values so
obtained can in turn be inspected. (Keep in mind that an event-driven application is
almost always doing nothing, except when it is briefly responding to a user event.)

11. Intervenable. The artisan can modify any part of the application (provided that doing so
does not contradict the definition of an existing component used in the application).

12. Reversible. A good UNDO means no regrets.

Working Draft

© 2017 Melvin E. Conway - 8 - September 10, 2017
Twitter: @conways_law

Part IC: Demonstration Video 1

Here is a screen shot of the wiring tool showing a
version of the program that I’ll be building in Video 1.
(I’ve added component numbers for this discussion.)
The wiring diagram (the “working material”) is at the
left side and the user interface of the artifact (the
program being built) is at the right. In accordance with
attribute 2 above (“Symmetrical”) both the tool and the
artifact are running at the same time.

This simple program illustrates the automatic coupling
between components 5 and 6 that implements list box
behavior. The user interface window is built by three
projectors: component 9 projects the window frame
with its title bar, component 6 projects the list box, and
component 7 projects the text line.
The list box component 6 projects the collection it
receives at its top sink connector from component 5.
This collection [“Larry”,”Curly”,”Moe”] is created by
component 4 from its three text inputs (component 4’s
graphic is meant to suggest wrapping individual wires
into a bundle). The selector component 5 (whose
graphic is meant to suggest a rotary selector switch)
sends its input collection out its top source connector
to list box component 6 and sends the selected element
out its bottom source connector to text line component
7. Component 7’s projection is above the list box in
the user interface window. “Moe” has just been clicked
in the list box and it appears in the text line.
The main purpose of Video 1 is not to show the
program but to show an interactive style of building
the program (see attribute 8 above). As you watch it
you will see a casual, almost experimental, approach to
putting the pieces together, while having full
knowledge at every stage of construction what data is

Working Draft

© 2017 Melvin E. Conway - 9 - September 10, 2017
Twitter: @conways_law

at key points of the wiring diagram, even before the
whole program is connected together.

The left-to-right flow convention puts the user
interface projector components at the right of
the wiring diagram and the data source
components at the left. Given that the user is on
the outside looking in, you can think of the right
side as the “outside” and the left side as the
“inside” of the program.
In this dataflow application model we don’t
think so much of building “top-down” or
“bottom-up” (that seems to be an artifact of
procedural programming) but of building
“outside-in” (right-to-left) and “inside-out”
(left-to-right). In my experience, what seems to
be most natural is building from both ends
toward the middle. (You will see that here and
again in Video 2.)

[Video 1 is in development. Here is an earlier version
as a temporary placeholder. You might have to start

each video manually.]
http://melconway.com/HumanizeTheCraft/Video_1/

You can learn how this program works in

http://melconway.com/Home/pdf/pattern.pdf .

Working Draft

© 2017 Melvin E. Conway - 10 - September 10, 2017
Twitter: @conways_law

Part II: The Prototyping Opportunity
Part IIA: Identifying the Part of an Application

Appropriate for Wiring
We assume the application structure shown here.

The Domain Layer contains all the domain objects,
which embody knowledge and behavior of the system
being modeled. In this model it includes persistent
storage. Other parts of the infrastructure, such as
networking, are ignored here. The presence of the
Domain API in the figure indicates the assumption that
there is a clean cleavage between the Application
Layer and the Domain Layer. The Domain API
presents a set of services that respond to requests
initiated by the Application Layer.
The Presentation Layer controls appearance to the
user, including accounting for the differences in
multiple user agents such as browsers and mobile
devices.
The Application Layer determines the way the
software presents the application’s use cases to the
user. It makes service requests to the Domain Layer,
and it calls on the Presentation Layer to manage
multiple windows/screens and sequences of
presentation, in response to user events.
This figure shows that the Presentation Layer has its
own API, which offers presentation services to the
Application Layer.

Assumptions

Working Draft

© 2017 Melvin E. Conway - 11 - September 10, 2017
Twitter: @conways_law

• Language opportunity: The wiring diagram is a

coding-free language for building the
Application Layer.

• Process opportunity: Domain-expert members
of a developer/domain-expert design team can
build their own application prototypes. This
can enhance communication between the design
team and the client organization, which can
accelerates the iterative process that will
converge on an acceptable prototype.

If the Application Layer is a wiring diagram,
communication with the Domain and Presentation
APIs is embodied in dedicated reusable “gateway”
components in the wiring diagram.

There is a set of Application/Presentation gateway
components shown in Video 1 and described below.
Video 2 shows a set of Application/Domain gateway
database components.
There are actually two Presentation Layers in the
existing prototype, the Microsoft Windows user
interface management system (UIMS), and a web-
browser UIMS. (Ideally this distinction would be
abstracted out and only one Presentation Layer would
be present.)

The gateway presentation components that are
the interfaces to the Windows UIMS are exactly
the projector components shown in Video 1.

The Windows UIMS is accessed by five categories of
primitive components (i.e., components whose bodies
are built with code). The web projectors are less
mature in the prototype and comprise only the
rightmost component category. These Presentation-
Layer gateway component categories are shown
below. Note that all the Choose One projectors
(including ButtonPalette) work interchangeably with
the Selector component.

The Opportunities

Application/Presentation
Gateway Components

Working Draft

© 2017 Melvin E. Conway - 12 - September 10, 2017
Twitter: @conways_law

The overlapping curly braces in the following figure
say that the Application/Presentation gateway
components are built with code and that they appear as
components in the wiring tool.

Working Draft

© 2017 Melvin E. Conway - 13 - September 10, 2017
Twitter: @conways_law

Similarly, there is a layer of Application/Domain
gateway components on the domain side of the
Application Layer, as shown in the following figure.

Application/Domain gateway components send service
requests to the Domain API, using the returned objects
to compute the component outputs. (These service
requests are sent as part of a component’s computation
in response to receipt of a compute message from a
sink connector.7)

7 See Update Protocol in http://melconway.com/Home/pdf/pattern.pdf.

Application/Domain
Gateway Components

Working Draft

© 2017 Melvin E. Conway - 14 - September 10, 2017
Twitter: @conways_law

Part IIB: Demonstration Video 2

Video 2 is the restaurant order-entry applet I prepared
for the DDD-Europe conference in February 2017. It is
at

http://melconway.com/HumanizeTheCraft/DDD_Europe/025-were-going-to-build.html

through
http://melconway.com/HumanizeTheCraft/DDD_Europe/038-complete-order-entry.html .

(You might have to start each of the four videos
manually.)8
(This menu application was initially conceived and
implemented on an iPad as part of a proof-of-concept
mobile order-taker device.)
In 1995 I attached the Microsoft Access relational
database to the Smalltalk prototype. In 2016 I added an
object-relational management (ORM) layer to
Smalltalk as a wrapper of the database in order to have
all the domain-dependent logic in the Domain Layer
and none in the wired Application Layer. (There is one
piece of domain-dependent logic in this video:
computing total price from unit price and quantity;
there is no arithmetic in the wiring diagram.)
I implemented the object database with the “Persistent
Objects” category of gateway components, shown at
the left. The object database schema is in two parts: the
Microsoft Access relational schema and some
Smalltalk classes, one for each record type in the
relational schema. Each of these classes is a subclass
of the class DemoDataSet, each of whose instances
encapsulate one record. The wiring sees only these
DemoDataSet subclass objects, and no relational
database records. The DemoDataSet hierarchy specifies
which record types can be derived from each type. For
example, only OrderItem and Item can be derived from
Item.
There is also a Smalltalk object called a “slice”, which
is the object-oriented equivalent of a table or view;

8 This program contains a rule violation that has since been
corrected. In private correspondence Jonathan Edwards pointed
out that the use of a FieldOwner component violates one of my
rules. I have since removed this component, and the current
version of this application complies with the Flow Object Pattern
paper.

Object Database Gateway
Components

Working Draft

© 2017 Melvin E. Conway - 15 - September 10, 2017
Twitter: @conways_law

slices act as collections of DemoDataSet subclass
instances. Slices are instances of the Smalltalk class
PersistentDataSet.

NameSpace is the name given to the relational
database equivalent. This component sources
the named NameSpace object.
DataSet is the name given to the relational table
equivalent. This component sources the named
PersistentDataSet object in the input
NameSpace.
The NewRecord component creates and sources
a new instance of a record that is derived from
the input record, including its inherited instance
variable values. The dialog from which this new
record type is chosen permits selection only of
the derived types permitted by the DemoDataSet
hierarchy, i.e., by the object database schema.
The SelectField component sources the named
instance variable of the input record. (Keep in
mind that, in keeping with the way pure object
systems are built, no values, only references, are
present. The object that is sourced is a
DemoFieldProxy object that encapsulates the
name of the instance variable.)
The Slice component sinks and sources a
PersistentDataSet object (i.e. a table or view),
and sinks an optional condition expression. It
implements an SQL SELECT statement
specified in a dialog the artisan can open when
the component is selected.
The Message component is the Joker in the set
of Application/Domain gateway components.
When the Do-It from the top source connector
is picked the component sends the named
message to the input domain object at the top
sink connector, with one or two optional
parameters. (My intent is to use it to add an
OrderItem to, and remove an OrderItem from, a
shopping cart list.) The dialog from which the
message is chosen only offers as options the
messages that can be received by the input
object.

Working Draft

© 2017 Melvin E. Conway - 16 - September 10, 2017
Twitter: @conways_law

Of particular interest is the video at
http://melconway.com/HumanizeTheCraft/DDD_Europe/038-complete-order-entry.html

which is described in part below. It bears watching at
least once, because it illustrates several
Application/Domain gateway components in action.
Note also that it illustrates many of the Modeless
Workflow attributes.
The Category and Item classes are straightforward; their
records are the immutable value objects in the
restaurant menu. The members of the OrderItem class
are the objects that will populate the shopping cart.
They are mutable domain entities created by the
application; each is derived from an instance of Item by
the NewRecord Application/Domain gateway
component shown here, whose specific purpose is
creating new records of a type that may be derived
from its input.
The top sink connector is receiving an existing Item
record. Opening the dialog that presents the choices for
the derived record type reveals only two classes: Item
and OrderItem, because the object databse schema
knows that these are the only two possibilities. (Watch
this dialog in the video.) Choosing OrderItem creates a
new instance of the OrderItem class with its inherited
instance variable values and pushes it out the lower
source connector.
The OrderItem instances are the line items that are to be
added to the shopping cart (which has not yet been
built). Each OrderItem instance has two instance
variables of particular interest that are not in Item:
Quantity and ExtendedPrice.
OrderItem instances are domain entities of interest that
demonstrate the domain API because they perform
extended (i.e., total) price computation as follows:
storing into the Quantity instance variable causes the
total price to be computed using the unit price value
and puts the result in ExtendedPrice. This storing
operation is performed by an editable text line
projector that has no knowledge of the thing it’s
changing.9 There is no arithmetic in the wiring
language. Thus, domain-specific behavior (price
computation) is kept in the Domain Layer and out of
the Application Layer.

9 This operation is very similar to the Edit a String use case on
page 11 of http://melconway.com/Home/pdf/pattern.pdf

How It Works

Working Draft

© 2017 Melvin E. Conway - 17 - September 10, 2017
Twitter: @conways_law

Part IIC: Extreme Prototyping

In this section I speculate about some possible
consequences of adoption of this technology.
There are two independent variables that would affect
these outcomes.

• The degree to which the technology is adopted,
whether just for prototyping, or whether wiring
technology is carried into building production
applications. At this time, neither is true.

• The development practices of the organization
using the technology, in particular how closely
the development team communicates with the
organization at large, and how closely the team
members follow the Evans model10 in which
technical and domain experts are peers.

By allowing the business representatives on the
development team to build and experiment with
meaningful prototypes the opportunity exists for a
more dynamic communication between these
representatives and their colleagues in the larger client
organization. Given some process discipline, this can
inject reality into the development at an earlier stage,
shortening the development process.
Given a reasonable set of presentation services and
some initial set of developmental domain objects,
some of which might even start as mocks, prototype
development can be fast and will tend to get ahead of
domain object development. I see this as an
opportunity for the design process as a whole, and
domain object definition in particular, to become more
experimental.
A hybrid technology such as this can divide the
software into slow parts (coding) and fast parts
(wiring). If this rhythm is allowed to play out, the fast
parts will drive the definition of the slow parts.
Because the presentation (projector) components are
externally determined and will change little, the slow
parts will be the services of the Domain Layer. Given
full engagement by the technical and non-technical

10 Domain-Driven Design: Tackling Complexity in the Heart
of Software, Eric Evans, Addison Wesley 2003 ISBN: 0-321-
12521-5

Development Process

Working Draft

© 2017 Melvin E. Conway - 18 - September 10, 2017
Twitter: @conways_law

sides of the development team this can lead to more of
an outside-in (i.e., potentially user-driven) design
process.
The necessity that the Application Layer communicate
with the Domain and Presentation Layers exclusively
via wired gateway components imposes a discipline on
the partitioning of the artifact whose violation would
be difficult and obvious. If the wiring technology
carries into production systems, this can have long-
term benefits for system integrity.
My observation is that the only significant coupling
between components seems to be through the domain
objects they share. To the extent that this is a problem,
it seems to be of the same nature as in object-oriented
programming in general, and is addressed the same
way, by careful domain-object design.

System Structure

