
© Copyright 2018 Melvin E. Conway
All rights reserved Release candidate 1: 2018-10-19 12:48 PM

1

Free	the	Collaboration	Barrier	
Mel Conway

1. DDD Prototyping: Extend the tech-business collaboration
2. Introducing the code-free API
3. Proposal: Release the Visual API into the wild

1.	DDD	Prototyping:	Extend	the	tech-business	collaboration	

What	is	the	Collaboration	Barrier?	

The collaboration barrier is the moment on the timeline of a business
application development project at which the major contribution to the end
result shifts decisively toward the software developers and away from the
business members of the design team.
The collaboration barrier typically occurs when enough is understood about
the domain model that coding in earnest can begin. At that point there is
confidence that the likelihood of disruptive change of ideas has become
acceptably low, so the ideas that have been captured in the domain model
can begin to be frozen in code.
Figure 1 shows a purely qualitative model of how the technical people and
the business people share participation in determining the final outcome as
the project progresses. There is a kink to the left of the collaboration barrier.
Before this kink the business people are educating the tech people about the
business. After the kink they have developed their ubiquitous language and
are describing the domain model fully collaboratively. To the right of the
collaboration barrier the contribution of the business people to the final
product becomes minimal.

Figure 1
The contribution of business people drops when coding begins

Plan to throw one away; you will, anyway.

Frederick P. Brooks, Jr.
“The Mythical Man-Month”

© Copyright 2018 Melvin E. Conway
All rights reserved Release candidate 1: 2018-10-19 12:48 PM

2

The	Cost	of	Change	

This can change if the team discovers that they must go back and revise the
domain model. After the collaboration barrier the cost of actually going back
and changing the domain model begins to rise, and it continues to rise as
time progresses and more work must be undone. In other words, before the
collaboration barrier the cost (in terms of ultimate project delay) of changing
your mind is low and flat. After the collaboration barrier the cost typically
rises monotonically. So after the collaboration barrier, if the realization
occurs that there is something about the design that needs to change, the
decision process may turn into a value tradeoff between product quality and
project schedule.
Figure 2 shows, again qualitatively, the cost of change as time progresses.
This cost is some combination of schedule delay and quality loss, depending
on how the change is handled.

Figure 2
The more code that has been committed, the greater the cost of change

Obviously you want to get the design right before the collaboration barrier.
The conundrum, in particular if this is a first implementation of the
requirement, is that (to put it starkly) you don’t know what to build until
you’ve built one. IBM’s experience building OS/360 led to Fred Brooks’s
lesson at the top.
	 	

© Copyright 2018 Melvin E. Conway
All rights reserved Release candidate 1: 2018-10-19 12:48 PM

3

The	Case	for	Business	Participation	in	Prototyping	

The answer, then, is to build something cheaply and quickly that you can use
in order to learn what you really need to build. I’m calling this thing a
prototype. The goal of a prototype should be to maximize learning at a
controlled cost.
My premise here is that, in order that this opportunity to learn be maximized,
the business people must be fully engaged in building the prototype. If this is
the case, the effect of introducing a prototyping stage into development is to
shift the collaboration barrier to the right, as shown in Figure 3.

Figure 3
Engaging business people in prototyping moves the collaboration barrier to the right

If we accept that the prototype is a throwaway (and there is no reason at this
point to doubt that) then the effort of building the prototype does not
contribute to the final code. This effort is “lost”, and it adds to the total cost
of the project. What does this cost buy? To quote Brooks:

“The management question, therefore, is not whether to build a pilot
system and throw it away. You will do that. The only question is
whether to plan in advance to build a throwaway, or to promise to
deliver the throwaway to customers”.1

I am taking the liberty of interpreting Brooks as follows:
What building the prototype buys is avoiding having to scrap and
rebuild the delivered system, or more optimistically, it buys building a
more usable system the first time. What we have learned since Brooks
is how to throw it away in little pieces instead of all at once.

Why can prototyping in which the business people are fully engaged lead to
a more usable system? Because the business people, who are the only
available prelease resources for measuring usability, are right there

© Copyright 2018 Melvin E. Conway
All rights reserved Release candidate 1: 2018-10-19 12:48 PM

4

participating in its construction. They are thinking about usability all the
time.
So we have begged the question: how can we build the prototype in a way
that the business people, who we assume are not programmers, are fully
engaged in the process?
Partition	the	Work
The answer I propose here is to divide the prototype into a part built by the
developers and a part built by the business people. Here are some
requirements on this approach to dividing up the task.

• The business people must have control over use of the prototype so
they can show it to their colleagues. The part they build must be
lightweight in order to permit experimentation, so they can learn from
experience and modify the design, and it must not require coding
skills.

• The parts that the business and technical people build must correspond
to the respective expertise and experience that these two groups bring
to the table. Specifically, the business people should work at the level
of use cases and the technical people should work at the level of
domain objects.

• Change is inevitable as learning occurs. This learning should be
reflected smoothly in the evolution of the prototype. (Ideally, as
learning occurs, the prototype should evolve toward a small
monolithic version of the ultimate system.)

• The sizes of the respective parts, the interface between them, and their
relative rates of change must be such that the developers and business
people can continue to work concurrently.

	 	

© Copyright 2018 Melvin E. Conway
All rights reserved Release candidate 1: 2018-10-19 12:48 PM

5

The	Two-faced	Prototype	Model
The two-faced model (Figure 4) is an environment combining traditionally-
built domain objects and pictorial use-case descriptions built by non-
programmers. The Visual APIs enable these two parts to work together
synergistically while maintaining the benefits of each.

Figure 4
The two-faced prototype model

Code-free	Use	Cases	
The code-free use cases execute value-delivering user interactions. They do
more than simply describe a user interface because they communicate with
domain objects, work with values derived directly from them, and respond
appropriately to user events, possibly with state changes.
I have developed a unidirectional object-flow wiring language that seems to
be sufficent for describing use cases according to the bulleted list of
requirements above. I do not assert that it is the only solution, but it is an
existence proof.
This wiring language is not powerful by itself, but it is seamlessly extended
to encompass the business processes of the domain objects through the
Visual APIs. Wiring is a pictorial, non-procedural flow language that
doesn’t do arithmetic or even the simplest algorithms involving looping or
branching. It occupies a sweet spot between power and accessibility (that is,
availability to non-programmers). It does not need to be made more
complicated because, wherever more power is required such power is
domain-specific, belongs in domain objects, and is accessible through Visual
APIs, described in the following section.

© Copyright 2018 Melvin E. Conway
All rights reserved Release candidate 1: 2018-10-19 12:48 PM

6

Figure 5 illustrates how the wiring language fits into the power-accessibility
tradeoff. It is capable of handling functional composition (by connecting
wired components) and collections (business objects that flow on the wires),
rendering user interfaces, responding to user events, and little else. It has
been my observation that much of what happens in these wired use-case
descriptions is assembling and disassembling collections. The objects that
flow down the wires can be complex, for example, records whose elements
have domain-specific behaviors.

Figure 5
Simple wiring languages are less powerful (by themselves) but more accessible

Visual	APIs	 	

The Visual API replaces the demand on the builder to construct grammatical
text by presentation of choices presented in dialog windows. It enables the
business people to access domain objects and parameterize messages to
them without leaving their comfort zones. These messages are sent by wired
components, and their return values flow down the wires.
Figure 4 shows that Visual APIs are built by developers. The payoffs from
this work are the ease of communication between the technical people and
business people, and extending the time that they are fully engaged further
into the development process. These are the business benefits from
prototyping of the two-faced model.

© Copyright 2018 Melvin E. Conway
All rights reserved Release candidate 1: 2018-10-19 12:48 PM

7

2.	Introducing	the	code-free	API	

This section combines multiple existing distinctions into one conceptual
framework, in order to extend this framework. Figure 9 puts the concepts
together in one place.
A.	The	Symmetry/Flexibility	Distinction	 	

Each API has two aspects.

• It is a formal specification of a request-response interface through
which a client software component makes a request of a server
software component.

• It is a contract to conform to the formal specification between two
communities of developers. Developers in the producer role build
conforming servers; developers in the consumer role build
conforming clients. Somebody publishes the API; often, but not
always, it is a producer.

Once the API is published and starts being used it might or might not be
acceptable to change it, depending on the relationships between producers
and consumers. This distinction divides APIs into two classes, negotiable
and fixed; see Figure 6.

Figure 6
The API contract might be negotiable or fixed, once the API is in use

This corresponds to the distinctions in the general API literature. This
literature almost always assumes that both producers and consumers are
programmers, or at least can work with the technical details of the formal
specification. However, the discusssion of DDD prototyping above
contradicts this assumption because the consumers, the business people, are
not usually programmers. So we need to turn this 1x2 into a 2x2; see Figure
7. The “symmetry” dimension of this array corresponds to the specification

© Copyright 2018 Melvin E. Conway
All rights reserved Release candidate 1: 2018-10-19 12:48 PM

8

aspect of the API; the “flexibility” dimension of the array corresponds to the
contract aspect of the API.

Figure 7
The Symmetry/Flexibility API diagram

Note that the spreadsheet, which has been recognized for a long time as
some not-readily-classified species of programming language, falls into this
classification scheme. A spreadsheet can be seen as an API, as follows:

• The consumer is the spreadsheet’s user.
• The producer is the vendor, for example, Microsoft/Excel or Lotus/1-

2-3.
• The formal specification is the application model, stated here

approximately:
o There is an expandable two-dimensional array of cells,

addressable by row and column. Each cell contains an entry.
o Each entry can be a literal or the value of a function whose

definition is also part of the cell, but is usually invisible.
o The arguments of the function are literals or cell references.
o A request occurs every time the user changes an entry. The

response is a network of constraint-resolution calculations that
attempt to restore consistency among the entries, which have
presumably been rendered inconsistent by the change.
Sometimes this attempt will fail and an error message will
appear.

© Copyright 2018 Melvin E. Conway
All rights reserved Release candidate 1: 2018-10-19 12:48 PM

9

Why mention the spreadsheet here? Because describing its application
model will allow us later to segue to the two-faced model.
B.	The	Construction/Operation	Distinction	
There are two distinct stages in the development of any unit of software, the
construction stage and the operation stage. In order for us to understand
fully what a Visual API is, these two stages need to be brought into the same
conceptual framework and regarded as two aspects of the same thing: the
life-cycle of that unit of software. For simplicity we limit this discussion to
the development of a client-server interaction according to an API.

• During the construction stage the producers and the consumers each
work with their respective tools building response code and request
code, respectively, according to the contractual aspect of the API.
Their tools build the respective codes to conform to the formal
specification aspect of the API.

• During the operation stage the producers and consumers, and (usually)
their tools, are not in the picture. Typically, the request code operates
on some device and initiates an interprocess communication, which
initiates the response code on some, possibly different, device.

The life-cycle/role diagram of Figure 8 captures this distinction for the
Visual API. Notice that there is a new element: the Public VAPI Posting.
This is visible to the consumer’s tool. It manages the interaction with the
consumer; this interaction generates and stores the request code in the
client. All this interaction and code-generation capability is built in advance
by the producer; this effort is an extra cost whose benefit is the simplicity
experienced by the consumer.

© Copyright 2018 Melvin E. Conway
All rights reserved Release candidate 1: 2018-10-19 12:48 PM

10

Figure 8
The life-cycle/role diagram of a Visual API

Figure 9 summarizes the concepts presented so far.

Figure 9
A Summary of the Concepts

© Copyright 2018 Melvin E. Conway
All rights reserved Release candidate 1: 2018-10-19 12:48 PM

11

3.	Proposal:	Release	the	Visual	API	into	the	wild	

Product	Concept	

Now let us revisit Figure 7 replacing the spreadsheet example by an example
that doesn’t exist yet. I’ll call it a do-it-yourself app builder, “DIY App
Builder” for short. It belongs in the Asymmetric/Fixed quadrant of Figure 7.
That is, its API contracts are not negotiable, and its clients can be created by
non-programmers. Figure 10 simply replaces “Spreadsheet” in Figure 7 by
“DIY App Builder”.

Figure 10
The DIY App Builder Replaces the Spreadsheet in Asymmetric/Fixed

What is a DIY app builder? Think of it as something that builds business
applications that conform to the two-faced model (Figure 4) and that don’t
require that the consumers of its APIs be programmers. The vision for DIY
app builder APIs is that they can be released into the wild the way Web APIs
and spreadsheets are; they will allow nonprogrammers to build certain
classes of business applications. What this looks like is the subject of the
next section.

© Copyright 2018 Melvin E. Conway
All rights reserved Release candidate 1: 2018-10-19 12:48 PM

12

Figure 11 portrays my conception of a DIY App Builder product.

Figure 11
The life-cycle/role diagram of the DIY App Builder

• Client	role. Applications are built in a web browser and, initially at
least, they are also executed in a browser. The user’s construction tool
is a wiring tool that runs in a browser concurrently with the
application it is building.

• Server	role.
o Construction	stage. In Figure 11 “Public” means available to

everybody; “Private” means available to a particular consumer
account.
The consumer builds applications based on domain objects that
have been configured from a publicly available library of
domain-object templates. These templates cover a range of
small- and medium-size business objects that have already been
abstracted by the creators of specified-function small-business
software packages now available. (The abstraction process has
been done; now it needs to be adapted to the two-faced model.)
The consumer can operate in two modes.

! Adapting a public template for specific use as a private
modifiable domain object.

! Wiring an application that accesses the consumer’s
repertoire of private modifiable domain objects through
its visual APIs.
What does “modifiable” mean? This is not yet clear, and

© Copyright 2018 Melvin E. Conway
All rights reserved Release candidate 1: 2018-10-19 12:48 PM

13

is probably context-dependent. The intent is to maximize
the consumer’s opportunity to change his/her design even
after operation has begun.

o Operation	stage. These are the same private modifiable domain
objects.

Implications	

This concept might well be limited, at least initially, to the small/medium
business software market. One way products are delivered in this market is
through local consultants who customize existing packages for their clients.
A few examples include: retail cash register/inventory/ordering, non-profit
donor management, and client project management/billing. This product
should enable these value-add consultants to be more productive and to build
proprietary domain objects that can increase their added value. Some small
fraction of business users might venture into building their own applications.	
If this product is managed appropriately it will build a community of users
who will interact and support each other. In the long run I can imagine the
community of Free and Open-Source Software, now mostly limited to
developers, splitting into two branches (corresponding to the two parts of the
two-faced model): the existing developer branch and a new end-user branch,
whose members trade encapsulated wiring diagrams. Some number of the
developers in the developer branch will build domain object templates for
this product, enlarging its market.

1 Brooks, Jr., Frederick P. (1975, 20th Anniversary Edition, 1995). “The Mythical Man-
Month”. Addison-Wesley

