The Full-Service API

Why: The purpose of the full-service API of a receiving object is to enable a
person building an application to use the public services of that object, with
minimal knowledge of the object’s native API. 1t is a linking language within
construction tools jointly used by programmers and non-programmers.

What: There are two execution domains that must be distinguished in the
following figure. Terms in this text in bold italics appear in the figure.

* Tool time: A user is interacting with an application-building tool.

* Application time: A user is interacting with the application being built.
Tool Time

Full-
service
API

offers

Uniform

User
Interface

projects

Coll!ction
o T

User
Interface

has:
|
|
|
|
|
|
|
|
|
|
|
represents
1
builds

|
| __represents—
1

Application Time

Receiving
Object

has

L.

——Collection———

Parameter

*
has

Public
IService|

.

.

If the tool satisfies the conditions of the humane dozenl, in particular the
Symmetrical property, each user event (e.g., mouse click), depending on its
location in the tool+application Ul, determines which execution domain
immediately follows. This execution domain is in effect only for the duration
of the processing of that user event. In such a tool the receiving object is
accessible in both execution domains.

© 2018 Melvin E. Conway
Twitter: @conways_law

1 http://melconway.com/Home/pdf/humanedozen.pdf

Date of pdf: 6/14/2018

conway.mel@gmail.com



A full-service API is a public property of every conforming object, which must
provide its full-service API on demand. (The default return value is empty.
However, every full-service API, even an empty one, offers its uniform user
interface as described below.) In a fully supporting application-building tool,
a full-service API gives you everything you need in order to use the public
services of its receiving object: to understand and test these services, and to
decide whether or not to use one of them without ever leaving the user
interface of the full-service API.

All tool-time user interfaces conform to the Self-revealing Principle: The user
is never required to construct grammatical expressions according to
some syntax; rather, the user interface presents choices for selection,
which it explains to the extent that the user requests.

A full-service API offers a uniform user interface that projects a (possibly
empty) collection of service points. A service point represents one public
service of the receiving object and provides all needed information to the
tool’s user so that the application being built can activate the fully
parameterized service corresponding to this service point at application
time. This service activation occurs in application time when a target
message is sent to the receiving object according to the receiving object’s
native API. If the user of the tool needs additional information about the
service point, or if the target message needs to be further parameterized, this
is done within a public-service-specific user interface provided by the service
point.

How: Within a supporting application-building tool the way for a user to
specify how to get a receiving object to perform one of its public services is
for the tool to ask the receiving object for its full-service API, which then
displays in its uniform user interface the collection of its service points. The
user can choose a service point from this collection. Help information for this
service point is made available and, if necessary, further specification of the
service point is provided within a user interface provided by the service
point; this user interface also conforms to the Self-revealing Principle. When
this choice of service point is confirmed by the user?, the tool builds into the
application a fully specified target message for the receiving object’s native
API that can be sent to the receiving object in application time.3

2 There must be provision for undoing this confirmation in later tool
sessions.

3 Tool dependencies can be minimized by building all tool-time Uls and

processes in the Web. This suggests a standard Web-based tool for
both defining and building the tool-time side of all full-service APlIs.

© 2018 Melvin E. Conway -2- Date of pdf: 6/14/2018
Twitter: @conways_law conway.mel@gmail.com



