

© Copyright 2004 Melvin E. Conway - 1 - 74

Paradise Lost:
Almost Nobody Knows What’s Really Happening

Inside a Modern Software Application
In the 1980s, with the advent of interactive software such as Macintosh and
Windows, and with widespread adoption of other technologies such as large-
capacity hard disks, business computing moved from protected vaults to
desktops. As computers became more accessible and user-friendly to the people
who benefited from them, the interactive software programs that enabled this
migration became more obscure and incomprehensible to the programmers who
built them.

Contents
Input-Process-Output

A Brief History of Mechanized File Processing
The Sort-Merge Processing Paradigm

Event-Driven
Then the World Changed
This is Progress?

Input-Process-Output
Computers came into widespread use as business tools in the late 1950s.
In those days data files were held in stacks of punched cards. Each card
carried a small amount of information, up to 80 letters or numbers. One
card might carry the basic name-address information for one customer,
for example, or the information for one line item of a sales transaction.

Punched cards have to be neatly stacked in order for processing of the
cards to be mechanized. You process one card at a time: you draw the
card at the beginning of the input stack, put it somewhere to work with it,
then when you are done you put it at the end of the output stack. You
repeat the process until the input stack is empty.

(After a few years magnetic tapes replaced punched cards. Tapes also
must be processed sequentially, so the processing methods remained
unchanged. I’ll continue to refer to cards, but this all applies to tapes as
well.)

Figure 1 shows a schematic diagram of this process.

Figure 1

Schematic Diagram of a Sequential File Process

A Brief History of
Mechanized File
Processing

© Copyright 2004 Melvin E. Conway - 2 - 74

Figure 2 shows a flow chart that describes, step by step, what actually
happens inside this basic sequential processing program.

The flow chart was the principal intellectual tool used by people
designing sequential file processing programs, for two reasons: it helped
them to think about the programs, and it was the principal medium for
documenting the programs. You can treat the flow chart as a game board;
start at the top, follow an arrow and, when you arrive at a box, perform
the action named in the box. Then follow the arrow leaving the box. In
the case of a diamond-shaped question box, choose the exit arrow that is
labeled with the correct answer.

Figure 2
The Flow Chart for a Sequential File Processing Program

A program description in the form Do A, then Do B, then Do C, etc. is
called a procedural description. We will see later that a procedural
description is not necessarily the only, or indeed the most useful, way to
describe how some programs work.

© Copyright 2004 Melvin E. Conway - 3 - 74

Until the world changed (see the next section) the Sort-Merge paradigm
was how data processing was done. Magnetic-tape computers spent all
their time sorting and merging sequential files on magnetic tapes.

A stack of cards is sorted using some group of characters stored on every
card, such as customer number. When we have a stack of cards, all
representing customers and sorted in some appropriate way such as by
customer number, we are entitled to call this stack a customer file.

Let’s say we are wholesalers and we want to perform an end-of-month
billing run in order to send out bills for the month’s sales transactions.
We perform a merge, in which we match up two input files, a customer
file and a transaction file, and produce one output file (in this case a
stack of printed invoices). Figure 3 is the schematic diagram of an
invoicing merge.

Figure 3

An invoicing merge

Early processors had very limited memory and could access the data in
only one card (or magnetic tape record) in each input file at a time.
Therefore we had to sort both the customer file and the transaction file
by customer number before performing the merge. Sorting both files by
customer number guarantees that, in one pass over the files, all the
transactions for every customer will be together and can be made to show
up at the same time the customer’s customer card shows up. Thus all the
data will be in place to print the invoice.

The invoicing program is an elaboration of the basic sequential
processing program shown above in Figure 2. Figure 4 below shows its
flow chart. (Bug alert: the design of this program assumes that for any
customer number appearing in a transaction record there is a
corresponding customer record in the customer file.)

The Sort-Merge
Processing Paradigm

© Copyright 2004 Melvin E. Conway - 4 - 74

Figure 4
Flowchart For the Invoicing Merge Program

The flowchart is a roadmap that shows how to navigate through the steps
of a program. It is important to recognize what a powerful conceptual
tool the flow chart is; part of the reason for this power is that these
programs have two simple properties.

1. All parts of the program are connected. The road map
describes one country, not multiple countries separated by
oceans.

2. There is a beginning and an end; you know where to start
and you know you have reached the end when the road map
takes you there.

© Copyright 2004 Melvin E. Conway - 5 - 74

Event-Driven

After sequential file processing had become well entrenched in the 1950s
and 1960s, two revolutionary things happened. Large magnetic disks
became the preferred storage medium—this eliminated any necessity for
sequential processing—and (in the 1980s) interactive applications,
initially popularized by the Macintosh and then Windows, became the
norm in business.

What interactive programs do internally bears no resemblance to
sequential file processing. Interactive programs are event-driven; an
interactive program contains little pieces of program called event
listeners, each one listening for a particular event such as a keystroke,
movement of the mouse, or a mouse click. Each event listener does
nothing until its particular event occurs; then it come to life and performs
some small task.

Here is how the typical sequential file processing program differs from
the typical interactive program.

The type of
program

What it does How it is
structured

Its rhythm

Sequential
file

processing
program.

Repetitively
processes all
records of one
or more
sequential files
from
beginning to
end.

A loop. It
keeps
repeating until
it runs out of
records.

Start, run
continuously
to the end,
then stop.

Graphical,
interactive,

event-driven
application.

Edits a file or
database
document, a
little bit at a
time, in
response to
small events
(e.g.,
keystrokes and
mouse clicks)
received from
the user.

A lot of
loosely
connected
pieces. Each
event listener
triggers a
specific
modification to
the document.
Each little
event
processor has a
beginning and
an end, but the
overall
program
doesn’t.

Inactivity,
then a burst
of activity in
response to
an event,
then
inactivity
again.

Then the World
Changed

© Copyright 2004 Melvin E. Conway - 6 - 74

The repetitive, sequential character of the sequential file processing
program disappeared as the dominant business information-processing
paradigm.

Event-driven programs don’t have the two important
properties—contiguity and distinct beginning and end—that
sequential file processing programs do. The flow chart as a
powerful intellectual tool for conceptualizing and
documenting programs has become useless, and nothing
has taken its place.

The invention of object-oriented programming has helped to rationalize
the internal structure of event-driven programs; object-oriented
programming did this by creating a set of not-easy-to-describe
abstractions out of which event-driven programs are now built.

The flowchart of Figure 4 is something a naïve, intelligent student can
study and understand in an hour; at the end of the hour she will have a
degree of confidence that she understands what happens within a
sequential file processing program. If necessary, she can simulate the
operation of the program by preparing a small deck of customer cards
and a small deck of transaction cards, pretend she is the processor, and
play out the program’s behavior.

This exercise is simply not possible for learning the behavior of an event-
driven program because an external agent (the user) triggers the little
event processors in no predictable order. Acquiring an understanding of
all the possible paths the program can traverse has become a much more
complex exercise.

Building high-quality event-driven programs is also harder. Event-driven
programs must defend themselves against the entry of incorrect data and
of other incorrect event sequences; this necessity enlarges the number of
test cases that must be considered compared to programs that don’t have
to deal directly with unpredictable operators.

Most programmers are too young to realize that their discipline used to
be much simpler; they accept obscurity and complexity as normal. They
have learned to skirt around some of the difficulties by living in the
world of the abstractions provided by object-oriented programming. The
price programmers (and wannabe programmers) are paying is that they
no longer are able to think in concrete step-by-step terms about what
really happens inside an event-driven program, and there is no longer
any brain-amplifying tool such as the flow chart that they can use to
wrap their minds around the gestalt of an event-driven program.

The economic and human consequences of this increase in obscurity and
complexity have developed slowly over decades and are not obvious to
those without an historical perspective. Today, to be hired as a
programmer in a business information-technology organization, the
candidate must have at least a Bachelor’s degree in Computer Science.
In the 1950s, when punched card technology was dominant and

© Copyright 2004 Melvin E. Conway - 7 - 74

programs were created by wiring plugboards, a business data-processing
operation comprised a flock of different types of punched-card
processing machines, each with a specific, narrow function. IBM
conducted courses that prepared people to be proficient in the
programming and operation of any one of these machines in a week or
so; a few of the more complex machines required several weeks. It was
possible to enter the data-processing workforce right out of high school.

The situation programmers find themselves in reminds me of a 1946
paper reporting experimental results in the psychology of learning. The
following figure appeared in the paper. These are multiple pictures of the
same cat, obtaining food on successive occasions.

Figure 5

How this cat got its meals.

In the experiment each cat learned to obtain food by pushing a pole that
stuck out of the floor of its box. The particular cat made famous by this
picture first succeeded in obtaining food by backing into the pole, and
that’s how it got its food from then on.

The cats in the experiment repeated what produced results without
understanding how their world worked. Programmers are in the same fix.

Experimental
Subject

Problem Solution

Cat Produce a meal Push stick with butt

Programmer Produce an event-
driven program

Push around object-
oriented abstractions

This is Progress?

