
The Goal

A Substantial and Important Role for
Non-programmers in Application Development

1 We want to make the business people,
and end users in general, first-class
participants in the development process.

The Term What It Means

Applications Interactive, Graphical UI,
Consumer and Business

Easy to Build
Everybody Has the Skills

to Understand
How They Work

and How to Build Them

Our Frame of Reference

2 Some definitions.

Applications. We’re not talking about
climate modeling. We’re talking about
the interactive apps on your phone and
on the desk of a customer service agent.

Easy to build. We avoid depending on
skills that only some of us have. We
favor depending on skills that we all
have, i.e., that we all learned in the first
few year of our lives. (Hint: that means
hand-eye coordination.)

Teach non-programmers to program.

Simplify programming in general.

Partition applications into code and non-code parts.

The Approach

3 We are not eliminating programming. We
are partitioning applications into

1. a part that is coded and built by

developers, and

2. a part that has a much simpler no-

code, no-algorithm conceptual model
that can be built by non-
programmers

This is What We’re Going For

4 BUT, the non-code part has to be
important and relevant.

Humane Builder Experience Concrete (Non-textual) Application Model

Two Guiding Principles for the Non-code Part

“Hands-on design principles”
Exploit the hand-eye

coordination we all share

“Fluidity design principles”
Minimize cognitive

context-switching friction

“Left-to-right Flow model”
(Plumbing, Wiring)

5 But first, here are the design principles
behind what you will see.

The Humane Builder Experience
principles evolved slowly over almost 60
years. You will see almost all of them in
the demo. I’ll elaborate on them in the
next two slides.

The Wiring Model began in 1992 and is
pretty much unchanged, although its
implementation in the wiring tool has
evolved radically, driven by the need to
realize new Builder Experience
principles as I discovered them.

These principles are not separable.
You will see their synergy in the videos I
will be showing you.

Hands-on Tool/Application-Language Design Principles
(use universally human skills)

Immediate
Continuous
Interactive
Transparent
Inspectable
Modifiable
Reversible

You experience no delay from change to effect
Your small changes ➔ Predictable effects
Each step suggests what you should do next
You have your hands on the working material
You can inspect any part at any time
You can modify anything you’ve built at any time
You can easily undo your recent moves

6 Consider this thought experiment. You
are in the business of making and selling
clay bowls. But the technology of the
potter’s wheel doesn’t exist. What you
do is write a bowl-making script in a text
editor and, once you are happy with it,
you email it to China. A couple of days
later (overnight if you pay extra) DHL
delivers the number of bowls you
ordered.

Sound ridiculous? Change a few words
and that’s how programming was done
when I started in the 1950s.

The Hands-on idea is to push
application building toward the right end
of the hands-on spectrum.

Fluidity Tool/Application-Language Design Principles
(minimum cognitive context-shifting friction)

Unified
Self-revealing
Symmetrical
Always on
Alive with your data

Source language = Execution language (no debugger)
Choose among visible choices, don’t construct
Wiring tool & application being built are peers
No start/stop during development
See application data in the wiring tool as you build

7 Fluidity means you don’t have to pay the
mental price of context-shifting, for
example,

• switching from one language syntax to

another,

• switching from one execution model

to another,

• switching from one tool (with its

peculiar rules) to another.

Everything you need is right in front of
you, now. (Contrast to: HTML, CSS,
Javascript, DOM, and that’s just in the
browser.)

All five items in this list contribute
importantly to fluidity and you will see
them all in the videos I’ll show you.

To Make the Application Layer Friendly to Non-programmers:

No iteration
No conditional

execution
No execution
sequencing

Already exists
Available for

use

Built by
developer-
colleagues

User

8 To make the application layer friendly to
non-programmers, push all the stuff that
makes programming hard (namely, the
stuff that makes algorithms powerful)
out to the other two layers.

The question is: after removing all this
power, is anything useful left?

The answer seems to be: with the right
organization of the other two layers, yes.
What remains in the application layer is
a language for describing and executing
use cases. It takes the form of a wiring
diagram.

